Skip to content

vllm.benchmarks.serve

Benchmark online serving throughput.

On the server side, run one of the following commands to launch the vLLM OpenAI API server: vllm serve

On the client side, run: vllm bench serve \ --backend \ --label \ --model \ --dataset-name \ --input-len \ --output-len \ --request-rate \ --num-prompts

MILLISECONDS_TO_SECONDS_CONVERSION module-attribute

MILLISECONDS_TO_SECONDS_CONVERSION = 1000

TERM_PLOTLIB_AVAILABLE module-attribute

TERM_PLOTLIB_AVAILABLE = (
    find_spec("termplotlib") is not None
    and which("gnuplot") is not None
)

BenchmarkMetrics dataclass

Source code in vllm/benchmarks/serve.py
@dataclass
class BenchmarkMetrics:
    completed: int
    failed: int
    total_input: int
    total_output: int
    request_throughput: float
    request_goodput: float
    output_throughput: float
    total_token_throughput: float
    mean_ttft_ms: float
    median_ttft_ms: float
    std_ttft_ms: float
    percentiles_ttft_ms: list[tuple[float, float]]
    mean_tpot_ms: float
    median_tpot_ms: float
    std_tpot_ms: float
    percentiles_tpot_ms: list[tuple[float, float]]
    mean_itl_ms: float
    median_itl_ms: float
    std_itl_ms: float
    percentiles_itl_ms: list[tuple[float, float]]
    # E2EL stands for end-to-end latency per request.
    # It is the time taken on the client side from sending
    # a request to receiving a complete response.
    mean_e2el_ms: float
    median_e2el_ms: float
    std_e2el_ms: float
    percentiles_e2el_ms: list[tuple[float, float]]
    # Max output tokens per second and concurrent requests at that peak
    max_output_tokens_per_s: float
    max_concurrent_requests: int

completed instance-attribute

completed: int

failed instance-attribute

failed: int

max_concurrent_requests instance-attribute

max_concurrent_requests: int

max_output_tokens_per_s instance-attribute

max_output_tokens_per_s: float

mean_e2el_ms instance-attribute

mean_e2el_ms: float

mean_itl_ms instance-attribute

mean_itl_ms: float

mean_tpot_ms instance-attribute

mean_tpot_ms: float

mean_ttft_ms instance-attribute

mean_ttft_ms: float

median_e2el_ms instance-attribute

median_e2el_ms: float

median_itl_ms instance-attribute

median_itl_ms: float

median_tpot_ms instance-attribute

median_tpot_ms: float

median_ttft_ms instance-attribute

median_ttft_ms: float

output_throughput instance-attribute

output_throughput: float

percentiles_e2el_ms instance-attribute

percentiles_e2el_ms: list[tuple[float, float]]

percentiles_itl_ms instance-attribute

percentiles_itl_ms: list[tuple[float, float]]

percentiles_tpot_ms instance-attribute

percentiles_tpot_ms: list[tuple[float, float]]

percentiles_ttft_ms instance-attribute

percentiles_ttft_ms: list[tuple[float, float]]

request_goodput instance-attribute

request_goodput: float

request_throughput instance-attribute

request_throughput: float

std_e2el_ms instance-attribute

std_e2el_ms: float

std_itl_ms instance-attribute

std_itl_ms: float

std_tpot_ms instance-attribute

std_tpot_ms: float

std_ttft_ms instance-attribute

std_ttft_ms: float

total_input instance-attribute

total_input: int

total_output instance-attribute

total_output: int

total_token_throughput instance-attribute

total_token_throughput: float

__init__

__init__(
    completed: int,
    failed: int,
    total_input: int,
    total_output: int,
    request_throughput: float,
    request_goodput: float,
    output_throughput: float,
    total_token_throughput: float,
    mean_ttft_ms: float,
    median_ttft_ms: float,
    std_ttft_ms: float,
    percentiles_ttft_ms: list[tuple[float, float]],
    mean_tpot_ms: float,
    median_tpot_ms: float,
    std_tpot_ms: float,
    percentiles_tpot_ms: list[tuple[float, float]],
    mean_itl_ms: float,
    median_itl_ms: float,
    std_itl_ms: float,
    percentiles_itl_ms: list[tuple[float, float]],
    mean_e2el_ms: float,
    median_e2el_ms: float,
    std_e2el_ms: float,
    percentiles_e2el_ms: list[tuple[float, float]],
    max_output_tokens_per_s: float,
    max_concurrent_requests: int,
) -> None

EmbedBenchmarkMetrics dataclass

Source code in vllm/benchmarks/serve.py
@dataclass
class EmbedBenchmarkMetrics:
    completed: int
    failed: int
    total_input: int
    request_throughput: float
    total_token_throughput: float
    mean_e2el_ms: float
    std_e2el_ms: float
    median_e2el_ms: float
    percentiles_e2el_ms: float

completed instance-attribute

completed: int

failed instance-attribute

failed: int

mean_e2el_ms instance-attribute

mean_e2el_ms: float

median_e2el_ms instance-attribute

median_e2el_ms: float

percentiles_e2el_ms instance-attribute

percentiles_e2el_ms: float

request_throughput instance-attribute

request_throughput: float

std_e2el_ms instance-attribute

std_e2el_ms: float

total_input instance-attribute

total_input: int

total_token_throughput instance-attribute

total_token_throughput: float

__init__

__init__(
    completed: int,
    failed: int,
    total_input: int,
    request_throughput: float,
    total_token_throughput: float,
    mean_e2el_ms: float,
    std_e2el_ms: float,
    median_e2el_ms: float,
    percentiles_e2el_ms: float,
) -> None

SpecDecodeMetrics dataclass

Speculative decoding metrics from the server's Prometheus endpoint.

Source code in vllm/benchmarks/serve.py
@dataclass
class SpecDecodeMetrics:
    """Speculative decoding metrics from the server's Prometheus endpoint."""

    num_drafts: int
    num_draft_tokens: int
    num_accepted_tokens: int
    accepted_per_pos: dict[int, int]

accepted_per_pos instance-attribute

accepted_per_pos: dict[int, int]

num_accepted_tokens instance-attribute

num_accepted_tokens: int

num_draft_tokens instance-attribute

num_draft_tokens: int

num_drafts instance-attribute

num_drafts: int

__init__

__init__(
    num_drafts: int,
    num_draft_tokens: int,
    num_accepted_tokens: int,
    accepted_per_pos: dict[int, int],
) -> None

TaskType

Bases: Enum

Source code in vllm/benchmarks/serve.py
class TaskType(Enum):
    GENERATION = "generation"
    POOLING = "pooling"

GENERATION class-attribute instance-attribute

GENERATION = 'generation'

POOLING class-attribute instance-attribute

POOLING = 'pooling'

_get_current_request_rate

_get_current_request_rate(
    ramp_up_strategy: Literal["linear", "exponential"]
    | None,
    ramp_up_start_rps: int | None,
    ramp_up_end_rps: int | None,
    request_index: int,
    total_requests: int,
    request_rate: float,
) -> float
Source code in vllm/benchmarks/serve.py
def _get_current_request_rate(
    ramp_up_strategy: Literal["linear", "exponential"] | None,
    ramp_up_start_rps: int | None,
    ramp_up_end_rps: int | None,
    request_index: int,
    total_requests: int,
    request_rate: float,
) -> float:
    if (
        ramp_up_strategy
        and ramp_up_start_rps is not None
        and ramp_up_end_rps is not None
    ):
        progress = request_index / max(total_requests - 1, 1)
        if ramp_up_strategy == "linear":
            increase = (ramp_up_end_rps - ramp_up_start_rps) * progress
            return ramp_up_start_rps + increase
        elif ramp_up_strategy == "exponential":
            ratio = ramp_up_end_rps / ramp_up_start_rps
            return ramp_up_start_rps * (ratio**progress)
        else:
            raise ValueError(f"Unknown ramp-up strategy: {ramp_up_strategy}")
    return request_rate

add_cli_args

add_cli_args(parser: ArgumentParser)
Source code in vllm/benchmarks/serve.py
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
def add_cli_args(parser: argparse.ArgumentParser):
    add_dataset_parser(parser)
    parser.add_argument(
        "--label",
        type=str,
        default=None,
        help="The label (prefix) of the benchmark results. If not specified, "
        "the value of '--backend' will be used as the label.",
    )
    parser.add_argument(
        "--backend",
        type=str,
        default="openai",
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
        help="The type of backend or endpoint to use for the benchmark.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    # Use 127.0.0.1 here instead of localhost to force the use of ipv4
    parser.add_argument("--host", type=str, default="127.0.0.1")
    parser.add_argument("--port", type=int, default=8000)
    parser.add_argument(
        "--endpoint",
        type=str,
        default="/v1/completions",
        help="API endpoint.",
    )
    parser.add_argument(
        "--header",
        metavar="KEY=VALUE",
        nargs="*",
        help="Key-value pairs (e.g, --header x-additional-info=0.3.3) "
        "for headers to be passed with each request. These headers override "
        "per backend constants and values set via environment variable, and "
        "will be overridden by other arguments (such as request ids).",
    )
    parser.add_argument(
        "--max-concurrency",
        type=int,
        default=None,
        help="Maximum number of concurrent requests. This can be used "
        "to help simulate an environment where a higher level component "
        "is enforcing a maximum number of concurrent requests. While the "
        "--request-rate argument controls the rate at which requests are "
        "initiated, this argument will control how many are actually allowed "
        "to execute at a time. This means that when used in combination, the "
        "actual request rate may be lower than specified with --request-rate, "
        "if the server is not processing requests fast enough to keep up.",
    )

    parser.add_argument(
        "--model",
        type=str,
        required=False,
        default=None,
        help="Name of the model. If not specified, will fetch the first model "
        "from the server's /v1/models endpoint.",
    )
    parser.add_argument(
        "--input-len",
        type=int,
        default=None,
        help="General input length for datasets. Maps to dataset-specific "
        "input length arguments (e.g., --random-input-len, --sonnet-input-len). "
        "If not specified, uses dataset defaults.",
    )
    parser.add_argument(
        "--output-len",
        type=int,
        default=None,
        help="General output length for datasets. Maps to dataset-specific "
        "output length arguments (e.g., --random-output-len, --sonnet-output-len). "
        "If not specified, uses dataset defaults.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name or path of the tokenizer, if not using the default tokenizer.",  # noqa: E501
    )
    parser.add_argument(
        "--tokenizer-mode",
        type=str,
        default="auto",
        help="""Tokenizer mode:\n
        - "auto" will use the tokenizer from `mistral_common` for Mistral models
        if available, otherwise it will use the "hf" tokenizer.\n
        - "hf" will use the fast tokenizer if available.\n
        - "slow" will always use the slow tokenizer.\n
        - "mistral" will always use the tokenizer from `mistral_common`.\n
        - "deepseek_v32" will always use the tokenizer from `deepseek_v32`.\n
        - Other custom values can be supported via plugins.""",
    )
    parser.add_argument("--use-beam-search", action="store_true")
    parser.add_argument(
        "--logprobs",
        type=int,
        default=None,
        help=(
            "Number of logprobs-per-token to compute & return as part of "
            "the request. If unspecified, then either (1) if beam search "
            "is disabled, no logprobs are computed & a single dummy "
            "logprob is returned for each token; or (2) if beam search "
            "is enabled 1 logprob per token is computed"
        ),
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=float("inf"),
        help="Number of requests per second. If this is inf, "
        "then all the requests are sent at time 0. "
        "Otherwise, we use Poisson process or gamma distribution "
        "to synthesize the request arrival times.",
    )
    parser.add_argument(
        "--burstiness",
        type=float,
        default=1.0,
        help="Burstiness factor of the request generation. "
        "Only take effect when request_rate is not inf. "
        "Default value is 1, which follows Poisson process. "
        "Otherwise, the request intervals follow a gamma distribution. "
        "A lower burstiness value (0 < burstiness < 1) results in more "
        "bursty requests. A higher burstiness value (burstiness > 1) "
        "results in a more uniform arrival of requests.",
    )
    parser.add_argument(
        "--trust-remote-code",
        action="store_true",
        help="Trust remote code from huggingface",
    )
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disable tqdm progress bar.",
    )
    parser.add_argument(
        "--num-warmups",
        type=int,
        default=0,
        help="Number of warmup requests.",
    )
    parser.add_argument(
        "--profile",
        action="store_true",
        help="Use vLLM Profiling. --profiler-config must be provided on the server.",
    )
    parser.add_argument(
        "--save-result",
        action="store_true",
        help="Specify to save benchmark results to a json file",
    )
    parser.add_argument(
        "--save-detailed",
        action="store_true",
        help="When saving the results, whether to include per request "
        "information such as response, error, ttfts, tpots, etc.",
    )
    parser.add_argument(
        "--append-result",
        action="store_true",
        help="Append the benchmark result to the existing json file.",
    )
    parser.add_argument(
        "--metadata",
        metavar="KEY=VALUE",
        nargs="*",
        help="Key-value pairs (e.g, --metadata version=0.3.3 tp=1) "
        "for metadata of this run to be saved in the result JSON file "
        "for record keeping purposes.",
    )
    parser.add_argument(
        "--result-dir",
        type=str,
        default=None,
        help="Specify directory to save benchmark json results."
        "If not specified, results are saved in the current directory.",
    )
    parser.add_argument(
        "--result-filename",
        type=str,
        default=None,
        help="Specify the filename to save benchmark json results."
        "If not specified, results will be saved in "
        "{label}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"  # noqa
        " format.",
    )
    parser.add_argument(
        "--ignore-eos",
        action="store_true",
        help="Set ignore_eos flag when sending the benchmark request."
        "Warning: ignore_eos is not supported in deepspeed_mii and tgi.",
    )
    parser.add_argument(
        "--percentile-metrics",
        type=str,
        default=None,
        help="Comma-separated list of selected metrics to report percentiles. "
        "This argument specifies the metrics to report percentiles. "
        'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
        'If not specified, defaults to "ttft,tpot,itl" for generative models '
        'and "e2el" for pooling models.',
    )
    parser.add_argument(
        "--metric-percentiles",
        type=str,
        default="99",
        help="Comma-separated list of percentiles for selected metrics. "
        'To report 25-th, 50-th, and 75-th percentiles, use "25,50,75". '
        'Default value is "99".'
        'Use "--percentile-metrics" to select metrics.',
    )
    parser.add_argument(
        "--goodput",
        nargs="+",
        required=False,
        help='Specify service level objectives for goodput as "KEY:VALUE" '
        "pairs, where the key is a metric name, and the value is in "
        'milliseconds. Multiple "KEY:VALUE" pairs can be provided, '
        "separated by spaces. Allowed request level metric names are "
        '"ttft", "tpot", "e2el". For more context on the definition of '
        "goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
        "and the blog: https://hao-ai-lab.github.io/blogs/distserve",
    )
    parser.add_argument(
        "--request-id-prefix",
        type=str,
        required=False,
        default=f"bench-{uuid.uuid4().hex[:8]}-",
        help="Specify the prefix of request id.",
    )

    sampling_group = parser.add_argument_group("sampling parameters")
    sampling_group.add_argument(
        "--top-p",
        type=float,
        default=None,
        help="Top-p sampling parameter. Only has effect on openai-compatible backends.",
    )
    sampling_group.add_argument(
        "--top-k",
        type=int,
        default=None,
        help="Top-k sampling parameter. Only has effect on openai-compatible backends.",
    )
    sampling_group.add_argument(
        "--min-p",
        type=float,
        default=None,
        help="Min-p sampling parameter. Only has effect on openai-compatible backends.",
    )
    sampling_group.add_argument(
        "--temperature",
        type=float,
        default=None,
        help="Temperature sampling parameter. Only has effect on "
        "openai-compatible backends. If not specified, default to greedy "
        "decoding (i.e. temperature==0.0).",
    )
    sampling_group.add_argument(
        "--frequency-penalty",
        type=float,
        default=None,
        help="Frequency penalty sampling parameter. Only has effect on "
        "openai-compatible backends.",
    )
    sampling_group.add_argument(
        "--presence-penalty",
        type=float,
        default=None,
        help="Presence penalty sampling parameter. Only has effect on "
        "openai-compatible backends.",
    )
    sampling_group.add_argument(
        "--repetition-penalty",
        type=float,
        default=None,
        help="Repetition penalty sampling parameter. Only has effect on "
        "openai-compatible backends.",
    )

    parser.add_argument(
        "--served-model-name",
        type=str,
        default=None,
        help="The model name used in the API. "
        "If not specified, the model name will be the "
        "same as the `--model` argument. ",
    )

    parser.add_argument(
        "--lora-modules",
        nargs="+",
        default=None,
        help="A subset of LoRA module names passed in when "
        "launching the server. For each request, the "
        "script chooses a LoRA module at random.",
    )

    parser.add_argument(
        "--ramp-up-strategy",
        type=str,
        default=None,
        choices=["linear", "exponential"],
        help="The ramp-up strategy. This would be used to "
        "ramp up the request rate from initial RPS to final "
        "RPS rate (specified by --ramp-up-start-rps and "
        "--ramp-up-end-rps.) over the duration of the benchmark.",
    )
    parser.add_argument(
        "--ramp-up-start-rps",
        type=int,
        default=None,
        help="The starting request rate for ramp-up (RPS). "
        "Needs to be specified when --ramp-up-strategy is used.",
    )
    parser.add_argument(
        "--ramp-up-end-rps",
        type=int,
        default=None,
        help="The ending request rate for ramp-up (RPS). "
        "Needs to be specified when --ramp-up-strategy is used.",
    )
    parser.add_argument(
        "--ready-check-timeout-sec",
        type=int,
        default=0,
        help="Maximum time to wait for the endpoint to become ready "
        "in seconds. Ready check will be skipped by default.",
    )

    parser.add_argument(
        "--extra-body",
        help="A JSON string representing extra body parameters to include "
        "in each request."
        'Example: \'{"chat_template_kwargs":{"enable_thinking":false}}\'',
        type=json.loads,
        default=None,
    )

benchmark async

benchmark(
    task_type: TaskType,
    endpoint_type: str,
    api_url: str,
    base_url: str,
    model_id: str,
    model_name: str,
    tokenizer: TokenizerLike,
    input_requests: list[SampleRequest],
    logprobs: int | None,
    request_rate: float,
    burstiness: float,
    disable_tqdm: bool,
    num_warmups: int,
    profile: bool,
    selected_percentile_metrics: list[str],
    selected_percentiles: list[float],
    ignore_eos: bool,
    goodput_config_dict: dict[str, float],
    max_concurrency: int | None,
    lora_modules: Iterable[str] | None,
    extra_headers: dict | None,
    extra_body: dict | None,
    ramp_up_strategy: Literal["linear", "exponential"]
    | None = None,
    ramp_up_start_rps: int | None = None,
    ramp_up_end_rps: int | None = None,
    ready_check_timeout_sec: int = 600,
)
Source code in vllm/benchmarks/serve.py
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
async def benchmark(
    task_type: TaskType,
    endpoint_type: str,
    api_url: str,
    base_url: str,
    model_id: str,
    model_name: str,
    tokenizer: TokenizerLike,
    input_requests: list[SampleRequest],
    logprobs: int | None,
    request_rate: float,
    burstiness: float,
    disable_tqdm: bool,
    num_warmups: int,
    profile: bool,
    selected_percentile_metrics: list[str],
    selected_percentiles: list[float],
    ignore_eos: bool,
    goodput_config_dict: dict[str, float],
    max_concurrency: int | None,
    lora_modules: Iterable[str] | None,
    extra_headers: dict | None,
    extra_body: dict | None,
    ramp_up_strategy: Literal["linear", "exponential"] | None = None,
    ramp_up_start_rps: int | None = None,
    ramp_up_end_rps: int | None = None,
    ready_check_timeout_sec: int = 600,
):
    try:
        request_func = ASYNC_REQUEST_FUNCS[endpoint_type]
    except KeyError:
        raise ValueError(f"Unknown backend: {endpoint_type}") from None

    # Reuses connections across requests to reduce TLS handshake overhead.
    connector = aiohttp.TCPConnector(
        limit=max_concurrency or 0,
        limit_per_host=max_concurrency or 0,
        ttl_dns_cache=300,
        use_dns_cache=True,
        keepalive_timeout=60,
        enable_cleanup_closed=True,
        force_close=False,
        ssl=("https://" in api_url),
    )

    session = aiohttp.ClientSession(
        connector=connector,
        trust_env=True,
        timeout=aiohttp.ClientTimeout(total=6 * 60 * 60),
    )

    print("Starting initial single prompt test run...")
    test_prompt, test_prompt_len, test_output_len, test_mm_content = (
        input_requests[0].prompt,
        input_requests[0].prompt_len,
        input_requests[0].expected_output_len,
        input_requests[0].multi_modal_data,
    )

    assert (
        test_mm_content is None
        or isinstance(test_mm_content, dict)
        or (
            isinstance(test_mm_content, list)
            and all(isinstance(item, dict) for item in test_mm_content)
        )
    ), "multi_modal_data must be a dict or list[dict]"
    test_input = RequestFuncInput(
        model=model_id,
        model_name=model_name,
        prompt=test_prompt,
        api_url=api_url,
        prompt_len=test_prompt_len,
        output_len=test_output_len,
        logprobs=logprobs,
        multi_modal_content=test_mm_content,
        ignore_eos=ignore_eos,
        extra_headers=extra_headers,
        extra_body=extra_body,
    )

    if ready_check_timeout_sec > 0:
        test_output = await wait_for_endpoint(
            request_func,
            test_input,
            session,
            timeout_seconds=ready_check_timeout_sec,
        )
        if not test_output.success:
            raise ValueError(
                "Initial test run failed - Please make sure benchmark "
                "arguments are correctly specified. "
                f"Error: {test_output.error}"
            )
        else:
            print("Initial test run completed.")
    else:
        print("Skipping endpoint ready check.")

    if num_warmups > 0:
        print(f"Warming up with {num_warmups} requests...")
        warmup_pbar = None if disable_tqdm else tqdm(total=num_warmups)
        warmup_semaphore = (
            asyncio.Semaphore(max_concurrency)
            if max_concurrency
            else contextlib.nullcontext()
        )
        warmup_tasks = []

        async def warmup_limited_request_func():
            async with warmup_semaphore:
                return await request_func(
                    request_func_input=test_input, session=session, pbar=warmup_pbar
                )

        for _ in range(num_warmups):
            request_task = asyncio.create_task(warmup_limited_request_func())
            warmup_tasks.append(request_task)
        _ = await asyncio.gather(*warmup_tasks)

        if warmup_pbar is not None:
            warmup_pbar.close()
        print("Warmup run completed.")

    print("Starting main benchmark run...")

    if lora_modules:
        # For each input request, choose a LoRA module at random.
        lora_modules = iter(
            [random.choice(lora_modules) for _ in range(len(input_requests))]
        )

    if profile:
        print("Starting profiler...")
        profile_input = RequestFuncInput(
            model=model_id,
            model_name=model_name,
            prompt=test_prompt,
            api_url=base_url + "/start_profile",
            prompt_len=test_prompt_len,
            output_len=test_output_len,
            logprobs=logprobs,
            multi_modal_content=test_mm_content,
            ignore_eos=ignore_eos,
            extra_headers=extra_headers,
            extra_body=extra_body,
        )
        profile_output = await request_func(
            request_func_input=profile_input, session=session
        )
        if profile_output.success:
            print("Profiler started")

    distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"

    if ramp_up_strategy is not None:
        print(f"Traffic ramp-up strategy: {ramp_up_strategy}.")
        print(
            f"Will increase RPS from {ramp_up_start_rps} to "
            f"{ramp_up_end_rps} RPS over the duration of the benchmark."
        )
    else:
        print(f"Traffic request rate: {request_rate}")

    print(f"Burstiness factor: {burstiness} ({distribution})")
    print(f"Maximum request concurrency: {max_concurrency}")

    spec_decode_metrics_before = await fetch_spec_decode_metrics(base_url, session)

    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

    semaphore = (
        asyncio.Semaphore(max_concurrency)
        if max_concurrency
        else contextlib.nullcontext()
    )

    async def limited_request_func(request_func_input, session, pbar):
        async with semaphore:
            return await request_func(
                request_func_input=request_func_input, session=session, pbar=pbar
            )

    benchmark_start_time = time.perf_counter()
    tasks: list[asyncio.Task] = []

    rps_change_events = []
    last_int_rps = -1
    if ramp_up_strategy is not None and ramp_up_start_rps is not None:
        last_int_rps = ramp_up_start_rps
        rps_change_events.append(
            {
                "rps": last_int_rps,
                "timestamp": datetime.now().isoformat(),
            }
        )

    async for request, current_request_rate in get_request(
        input_requests,
        request_rate,
        burstiness,
        ramp_up_strategy,
        ramp_up_start_rps,
        ramp_up_end_rps,
    ):
        if ramp_up_strategy is not None:
            current_int_rps = int(current_request_rate)
            if current_int_rps > last_int_rps:
                timestamp = datetime.now().isoformat()
                for rps_val in range(last_int_rps + 1, current_int_rps + 1):
                    rps_change_events.append({"rps": rps_val, "timestamp": timestamp})
                last_int_rps = current_int_rps
        prompt, prompt_len, output_len, mm_content, request_id = (
            request.prompt,
            request.prompt_len,
            request.expected_output_len,
            request.multi_modal_data,
            request.request_id,
        )
        req_model_id, req_model_name = model_id, model_name
        if lora_modules:
            req_lora_module = next(lora_modules)
            req_model_id, req_model_name = req_lora_module, req_lora_module

        request_func_input = RequestFuncInput(
            model=req_model_id,
            model_name=req_model_name,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
            logprobs=logprobs,
            multi_modal_content=mm_content,
            ignore_eos=ignore_eos,
            extra_headers=extra_headers,
            extra_body=extra_body,
            request_id=request_id,
        )
        tasks.append(
            asyncio.create_task(
                limited_request_func(
                    request_func_input=request_func_input, session=session, pbar=pbar
                )
            )
        )
    outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)

    if pbar is not None:
        pbar.close()

    benchmark_duration = time.perf_counter() - benchmark_start_time

    spec_decode_metrics_after = await fetch_spec_decode_metrics(base_url, session)
    spec_decode_stats: dict[str, Any] | None = None
    if spec_decode_metrics_before is not None and spec_decode_metrics_after is not None:
        delta_drafts = (
            spec_decode_metrics_after.num_drafts - spec_decode_metrics_before.num_drafts
        )
        delta_draft_tokens = (
            spec_decode_metrics_after.num_draft_tokens
            - spec_decode_metrics_before.num_draft_tokens
        )
        delta_accepted = (
            spec_decode_metrics_after.num_accepted_tokens
            - spec_decode_metrics_before.num_accepted_tokens
        )
        per_pos_rates: list[float] = []
        if delta_drafts > 0:
            positions = sorted(
                set(spec_decode_metrics_before.accepted_per_pos.keys())
                | set(spec_decode_metrics_after.accepted_per_pos.keys())
            )
            for pos in positions:
                before_val = spec_decode_metrics_before.accepted_per_pos.get(pos, 0)
                after_val = spec_decode_metrics_after.accepted_per_pos.get(
                    pos, before_val
                )
                delta_pos = after_val - before_val
                per_pos_rates.append(delta_pos / delta_drafts)

        if delta_draft_tokens > 0:
            acceptance_rate = (delta_accepted / delta_draft_tokens) * 100
            acceptance_length = (
                1 + delta_accepted / delta_drafts if delta_drafts > 0 else 0.0
            )
            spec_decode_stats = {
                "num_drafts": delta_drafts,
                "draft_tokens": delta_draft_tokens,
                "accepted_tokens": delta_accepted,
                "acceptance_rate": acceptance_rate,
                "acceptance_length": acceptance_length,
                "per_position_acceptance_rates": per_pos_rates,
            }

    if task_type == TaskType.GENERATION:
        metrics, actual_output_lens = calculate_metrics(
            input_requests=input_requests,
            outputs=outputs,
            dur_s=benchmark_duration,
            tokenizer=tokenizer,
            selected_percentiles=selected_percentiles,
            goodput_config_dict=goodput_config_dict,
        )
    else:
        metrics = calculate_metrics_for_embeddings(
            outputs=outputs,
            dur_s=benchmark_duration,
            selected_percentiles=selected_percentiles,
        )
        actual_output_lens = 0

    print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10}".format("Failed requests:", metrics.failed))
    if max_concurrency is not None:
        print("{:<40} {:<10}".format("Maximum request concurrency:", max_concurrency))
    if request_rate != float("inf"):
        print("{:<40} {:<10.2f}".format("Request rate configured (RPS):", request_rate))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    if isinstance(metrics, BenchmarkMetrics):
        print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    if goodput_config_dict:
        print(
            "{:<40} {:<10.2f}".format(
                "Request goodput (req/s):", metrics.request_goodput
            )
        )
    if isinstance(metrics, BenchmarkMetrics):
        print(
            "{:<40} {:<10.2f}".format(
                "Output token throughput (tok/s):", metrics.output_throughput
            )
        )
        print(
            "{:<40} {:<10.2f}".format(
                "Peak output token throughput (tok/s):", metrics.max_output_tokens_per_s
            )
        )
        print(
            "{:<40} {:<10.2f}".format(
                "Peak concurrent requests:", metrics.max_concurrent_requests
            )
        )
    print(
        "{:<40} {:<10.2f}".format(
            "Total token throughput (tok/s):", metrics.total_token_throughput
        )
    )

    if isinstance(metrics, BenchmarkMetrics):
        result = {
            "duration": benchmark_duration,
            "completed": metrics.completed,
            "failed": metrics.failed,
            "total_input_tokens": metrics.total_input,
            "total_output_tokens": metrics.total_output,
            "request_throughput": metrics.request_throughput,
            "request_goodput": metrics.request_goodput if goodput_config_dict else None,
            "output_throughput": metrics.output_throughput,
            "total_token_throughput": metrics.total_token_throughput,
            "input_lens": [output.prompt_len for output in outputs],
            "output_lens": actual_output_lens,
            "ttfts": [output.ttft for output in outputs],
            "itls": [output.itl for output in outputs],
            "generated_texts": [output.generated_text for output in outputs],
            "errors": [output.error for output in outputs],
            "max_output_tokens_per_s": metrics.max_output_tokens_per_s,
            "max_concurrent_requests": metrics.max_concurrent_requests,
        }
    else:
        result = {
            "duration": benchmark_duration,
            "completed": metrics.completed,
            "total_input_tokens": metrics.total_input,
            "request_throughput": metrics.request_throughput,
            "total_token_throughput": metrics.total_token_throughput,
            "input_lens": [output.prompt_len for output in outputs],
            "errors": [output.error for output in outputs],
        }

    if rps_change_events:
        result["rps_change_events"] = rps_change_events

    if spec_decode_stats is not None:
        result["spec_decode_acceptance_rate"] = spec_decode_stats["acceptance_rate"]
        result["spec_decode_acceptance_length"] = spec_decode_stats["acceptance_length"]
        result["spec_decode_num_drafts"] = int(spec_decode_stats["num_drafts"])
        result["spec_decode_draft_tokens"] = int(spec_decode_stats["draft_tokens"])
        result["spec_decode_accepted_tokens"] = int(
            spec_decode_stats["accepted_tokens"]
        )
        result["spec_decode_per_position_acceptance_rates"] = spec_decode_stats.get(
            "per_position_acceptance_rates", []
        )

    def process_one_metric(
        # E.g., "ttft"
        metric_attribute_name: str,
        # E.g., "TTFT"
        metric_name: str,
        # E.g., "Time to First Token"
        metric_header: str,
    ):
        # This function prints and adds statistics of the specified
        # metric.
        if metric_attribute_name not in selected_percentile_metrics:
            return
        print("{s:{c}^{n}}".format(s=metric_header, n=50, c="-"))
        print(
            "{:<40} {:<10.2f}".format(
                f"Mean {metric_name} (ms):",
                getattr(metrics, f"mean_{metric_attribute_name}_ms"),
            )
        )
        print(
            "{:<40} {:<10.2f}".format(
                f"Median {metric_name} (ms):",
                getattr(metrics, f"median_{metric_attribute_name}_ms"),
            )
        )
        result[f"mean_{metric_attribute_name}_ms"] = getattr(
            metrics, f"mean_{metric_attribute_name}_ms"
        )
        result[f"median_{metric_attribute_name}_ms"] = getattr(
            metrics, f"median_{metric_attribute_name}_ms"
        )
        result[f"std_{metric_attribute_name}_ms"] = getattr(
            metrics, f"std_{metric_attribute_name}_ms"
        )
        for p, value in getattr(metrics, f"percentiles_{metric_attribute_name}_ms"):
            p_word = str(int(p)) if int(p) == p else str(p)
            print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", value))
            result[f"p{p_word}_{metric_attribute_name}_ms"] = value

    if task_type == TaskType.GENERATION:
        process_one_metric("ttft", "TTFT", "Time to First Token")
        process_one_metric("tpot", "TPOT", "Time per Output Token (excl. 1st token)")
        process_one_metric("itl", "ITL", "Inter-token Latency")
    process_one_metric("e2el", "E2EL", "End-to-end Latency")

    if spec_decode_stats is not None:
        print("{s:{c}^{n}}".format(s="Speculative Decoding", n=50, c="-"))
        print(
            "{:<40} {:<10.2f}".format(
                "Acceptance rate (%):", spec_decode_stats["acceptance_rate"]
            )
        )
        print(
            "{:<40} {:<10.2f}".format(
                "Acceptance length:", spec_decode_stats["acceptance_length"]
            )
        )
        print("{:<40} {:<10}".format("Drafts:", int(spec_decode_stats["num_drafts"])))
        print(
            "{:<40} {:<10}".format(
                "Draft tokens:", int(spec_decode_stats["draft_tokens"])
            )
        )
        print(
            "{:<40} {:<10}".format(
                "Accepted tokens:", int(spec_decode_stats["accepted_tokens"])
            )
        )
        per_pos = spec_decode_stats.get("per_position_acceptance_rates", [])
        if per_pos:
            print("Per-position acceptance (%):")
            for i, rate in enumerate(per_pos):
                print("{:<40} {:<10.2f}".format(f"  Position {i}:", rate * 100))

    print("=" * 50)

    if profile:
        print("Stopping profiler...")
        profile_input = RequestFuncInput(
            model=model_id,
            prompt=test_prompt,
            api_url=base_url + "/stop_profile",
            prompt_len=test_prompt_len,
            output_len=test_output_len,
            logprobs=logprobs,
        )
        profile_output = await request_func(
            request_func_input=profile_input, session=session
        )
        if profile_output.success:
            print("Profiler stopped")

    await session.close()
    return result

calculate_metrics

calculate_metrics(
    input_requests: list[SampleRequest],
    outputs: list[RequestFuncOutput],
    dur_s: float,
    tokenizer: TokenizerLike,
    selected_percentiles: list[float],
    goodput_config_dict: dict[str, float],
) -> tuple[BenchmarkMetrics, list[int]]

Calculate the metrics for the benchmark.

Parameters:

Name Type Description Default
input_requests list[SampleRequest]

The input requests.

required
outputs list[RequestFuncOutput]

The outputs of the requests.

required
dur_s float

The duration of the benchmark.

required
tokenizer TokenizerLike

The tokenizer to use.

required
selected_percentiles list[float]

The percentiles to select.

required
goodput_config_dict dict[str, float]

The goodput configuration.

required

Returns:

Type Description
tuple[BenchmarkMetrics, list[int]]

A tuple of the benchmark metrics and the actual output lengths.

Source code in vllm/benchmarks/serve.py
def calculate_metrics(
    input_requests: list[SampleRequest],
    outputs: list[RequestFuncOutput],
    dur_s: float,
    tokenizer: TokenizerLike,
    selected_percentiles: list[float],
    goodput_config_dict: dict[str, float],
) -> tuple[BenchmarkMetrics, list[int]]:
    """Calculate the metrics for the benchmark.

    Args:
        input_requests: The input requests.
        outputs: The outputs of the requests.
        dur_s: The duration of the benchmark.
        tokenizer: The tokenizer to use.
        selected_percentiles: The percentiles to select.
        goodput_config_dict: The goodput configuration.

    Returns:
        A tuple of the benchmark metrics and the actual output lengths.
    """
    actual_output_lens: list[int] = []
    total_input = 0
    completed = 0
    good_completed = 0
    itls: list[float] = []
    tpots: list[float] = []
    all_tpots: list[float] = []
    ttfts: list[float] = []
    e2els: list[float] = []
    for i in range(len(outputs)):
        if outputs[i].success:
            output_len = outputs[i].output_tokens

            if not output_len:
                # We use the tokenizer to count the number of output tokens
                # for some serving backends instead of looking at
                # len(outputs[i].itl) since multiple output tokens may be
                # bundled together
                # Note : this may inflate the output token count slightly
                output_len = len(
                    tokenizer(
                        outputs[i].generated_text, add_special_tokens=False
                    ).input_ids
                )
            actual_output_lens.append(output_len)
            total_input += input_requests[i].prompt_len
            tpot = 0
            if output_len > 1:
                latency_minus_ttft = outputs[i].latency - outputs[i].ttft
                tpot = latency_minus_ttft / (output_len - 1)
                tpots.append(tpot)
            # Note: if output_len <= 1, we regard tpot as 0 for goodput
            all_tpots.append(tpot)
            itls += outputs[i].itl
            ttfts.append(outputs[i].ttft)
            e2els.append(outputs[i].latency)
            completed += 1
        else:
            actual_output_lens.append(0)

    if goodput_config_dict:
        valid_metrics = []
        slo_values = []

        if "ttft" in goodput_config_dict:
            valid_metrics.append(ttfts)
            slo_values.append(
                goodput_config_dict["ttft"] / MILLISECONDS_TO_SECONDS_CONVERSION
            )
        if "tpot" in goodput_config_dict:
            valid_metrics.append(all_tpots)
            slo_values.append(
                goodput_config_dict["tpot"] / MILLISECONDS_TO_SECONDS_CONVERSION
            )
        if "e2el" in goodput_config_dict:
            valid_metrics.append(e2els)
            slo_values.append(
                goodput_config_dict["e2el"] / MILLISECONDS_TO_SECONDS_CONVERSION
            )

        for req_metric in zip(*valid_metrics):
            is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
            if is_good_req:
                good_completed += 1

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )

    # Calculate max output tokens per second metric
    max_output_tokens_per_s = 0.0
    max_concurrent_requests = 0

    # Find the time range across all successful requests
    successful_outputs = [output for output in outputs if output.success]
    failed_outputs = [output for output in outputs if not output.success]

    if len(failed_outputs) > 0:
        print("Failed requests during benchmark run detected (capping to 10):")
        for i, err in enumerate(failed_outputs[:10]):
            print(f"Error {i}: {err.error}")

    if successful_outputs:
        min_start_time = min(output.start_time for output in successful_outputs)
        max_end_time = max(
            output.start_time + output.latency for output in successful_outputs
        )

        # Create second buckets (ceiling to ensure we capture all time)
        duration_seconds = int(np.ceil(max_end_time - min_start_time)) + 1
        tokens_per_second = np.zeros(duration_seconds)
        concurrent_requests_per_second = np.zeros(duration_seconds)

        for i, output in enumerate(successful_outputs):
            # Calculate token generation timestamp using
            # start_time, ttft, and itl
            token_times = [output.start_time + output.ttft]
            current_time = token_times[0]
            for itl_value in output.itl:
                current_time += itl_value
                token_times.append(current_time)

            # Add tokens to second buckets
            for token_time in token_times:
                second_bucket = int(token_time - min_start_time)
                if 0 <= second_bucket < duration_seconds:
                    tokens_per_second[second_bucket] += 1

            # Track concurrent requests for each second this request was active
            request_start_second = int(output.start_time - min_start_time)
            request_end_second = int(
                (output.start_time + output.latency) - min_start_time
            )

            for second in range(request_start_second, request_end_second + 1):
                concurrent_requests_per_second[second] += 1

        # Find the maximum tokens per second and corresponding
        # concurrent requests
        if len(tokens_per_second) > 0:
            max_output_tokens_per_s = float(np.max(tokens_per_second))
            max_concurrent_requests = int(np.max(concurrent_requests_per_second))

        if TERM_PLOTLIB_AVAILABLE:
            import termplotlib as tpl

            fig = tpl.figure()
            fig.plot(
                np.arange(len(tokens_per_second)),
                tokens_per_second,
                title="Output tokens per second",
            )
            fig.plot(
                np.arange(len(concurrent_requests_per_second)),
                concurrent_requests_per_second,
                title="Concurrent requests per second",
            )
            fig.show()
        else:
            print("tip: install termplotlib and gnuplot to plot the metrics")

    metrics = BenchmarkMetrics(
        completed=completed,
        failed=len(failed_outputs),
        total_input=total_input,
        total_output=sum(actual_output_lens),
        request_throughput=completed / dur_s,
        request_goodput=good_completed / dur_s,
        output_throughput=sum(actual_output_lens) / dur_s,
        total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
        mean_ttft_ms=np.mean(ttfts or 0)
        * 1000,  # ttfts is empty if streaming is not supported by the endpoint
        std_ttft_ms=np.std(ttfts or 0) * 1000,
        median_ttft_ms=np.median(ttfts or 0) * 1000,
        percentiles_ttft_ms=[
            (p, np.percentile(ttfts or 0, p) * 1000) for p in selected_percentiles
        ],
        mean_tpot_ms=np.mean(tpots or 0) * 1000,
        std_tpot_ms=np.std(tpots or 0) * 1000,
        median_tpot_ms=np.median(tpots or 0) * 1000,
        percentiles_tpot_ms=[
            (p, np.percentile(tpots or 0, p) * 1000) for p in selected_percentiles
        ],
        mean_itl_ms=np.mean(itls or 0) * 1000,
        std_itl_ms=np.std(itls or 0) * 1000,
        median_itl_ms=np.median(itls or 0) * 1000,
        percentiles_itl_ms=[
            (p, np.percentile(itls or 0, p) * 1000) for p in selected_percentiles
        ],
        mean_e2el_ms=np.mean(e2els or 0) * 1000,
        std_e2el_ms=np.std(e2els or 0) * 1000,
        median_e2el_ms=np.median(e2els or 0) * 1000,
        percentiles_e2el_ms=[
            (p, np.percentile(e2els or 0, p) * 1000) for p in selected_percentiles
        ],
        max_output_tokens_per_s=max_output_tokens_per_s,
        max_concurrent_requests=max_concurrent_requests,
    )

    return metrics, actual_output_lens

calculate_metrics_for_embeddings

calculate_metrics_for_embeddings(
    outputs: list[RequestFuncOutput],
    dur_s: float,
    selected_percentiles: list[float],
) -> EmbedBenchmarkMetrics

Calculate the metrics for the embedding requests.

Parameters:

Name Type Description Default
outputs list[RequestFuncOutput]

The outputs of the requests.

required
dur_s float

The duration of the benchmark.

required
selected_percentiles list[float]

The percentiles to select.

required

Returns:

Type Description
EmbedBenchmarkMetrics

The calculated benchmark metrics.

Source code in vllm/benchmarks/serve.py
def calculate_metrics_for_embeddings(
    outputs: list[RequestFuncOutput],
    dur_s: float,
    selected_percentiles: list[float],
) -> EmbedBenchmarkMetrics:
    """Calculate the metrics for the embedding requests.

    Args:
        outputs: The outputs of the requests.
        dur_s: The duration of the benchmark.
        selected_percentiles: The percentiles to select.

    Returns:
        The calculated benchmark metrics.
    """
    total_input = 0
    completed = 0
    failed = 0
    e2els: list[float] = []
    for i in range(len(outputs)):
        if outputs[i].success:
            e2els.append(outputs[i].latency)
            completed += 1
            total_input += outputs[i].prompt_len
        else:
            failed += 1

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )
    metrics = EmbedBenchmarkMetrics(
        completed=completed,
        failed=failed,
        total_input=total_input,
        request_throughput=completed / dur_s,
        total_token_throughput=total_input / dur_s,
        mean_e2el_ms=np.mean(e2els or 0) * 1000,
        std_e2el_ms=np.std(e2els or 0) * 1000,
        median_e2el_ms=np.median(e2els or 0) * 1000,
        percentiles_e2el_ms=[
            (p, np.percentile(e2els or 0, p) * 1000) for p in selected_percentiles
        ],
    )
    return metrics

check_goodput_args

check_goodput_args(args)
Source code in vllm/benchmarks/serve.py
def check_goodput_args(args):
    # Check and parse goodput arguments
    goodput_config_dict = {}
    VALID_NAMES = ["ttft", "tpot", "e2el"]
    if args.goodput:
        goodput_config_dict = parse_goodput(args.goodput)
        for slo_name, slo_val in goodput_config_dict.items():
            if slo_name not in VALID_NAMES:
                raise ValueError(
                    f"Invalid metric name found, {slo_name}: {slo_val}. "
                    "The service level objective name should be one of "
                    f"{str(VALID_NAMES)}. "
                )
            if slo_val < 0:
                raise ValueError(
                    f"Invalid value found, {slo_name}: {slo_val}. "
                    "The service level objective value should be "
                    "non-negative."
                )
    return goodput_config_dict

fetch_spec_decode_metrics async

fetch_spec_decode_metrics(
    base_url: str, session: ClientSession
) -> SpecDecodeMetrics | None

Fetch speculative decoding metrics from the server's Prometheus endpoint.

Returns None if speculative decoding is not enabled or metrics are not available.

Source code in vllm/benchmarks/serve.py
async def fetch_spec_decode_metrics(
    base_url: str, session: aiohttp.ClientSession
) -> SpecDecodeMetrics | None:
    """Fetch speculative decoding metrics from the server's Prometheus endpoint.

    Returns None if speculative decoding is not enabled or metrics are not available.
    """
    metrics_url = f"{base_url}/metrics"
    try:
        async with session.get(metrics_url) as response:
            if response.status != 200:
                return None
            text = await response.text()

            num_drafts = 0
            num_draft_tokens = 0
            num_accepted_tokens = 0
            accepted_per_pos: dict[int, int] = {}
            found_spec_decode = False

            for line in text.split("\n"):
                line = line.strip()
                if not line or line.startswith("#"):
                    continue

                if line.startswith("vllm:spec_decode"):
                    found_spec_decode = True
                    parts = line.split()
                    if parts:
                        with contextlib.suppress(ValueError):
                            if "num_drafts" in line:
                                num_drafts += int(float(parts[-1]))
                            elif "num_draft_tokens" in line:
                                num_draft_tokens += int(float(parts[-1]))
                            elif "num_accepted_tokens_per_pos" in line:
                                pos_label = 'position="'
                                if pos_label in line:
                                    start = line.index(pos_label) + len(pos_label)
                                    end = line.index('"', start)
                                    pos = int(line[start:end])
                                    val = int(float(parts[-1]))
                                    accepted_per_pos[pos] = (
                                        accepted_per_pos.get(pos, 0) + val
                                    )
                            elif "num_accepted_tokens" in line:
                                num_accepted_tokens += int(float(parts[-1]))

            if not found_spec_decode:
                return None

            return SpecDecodeMetrics(
                num_drafts=num_drafts,
                num_draft_tokens=num_draft_tokens,
                num_accepted_tokens=num_accepted_tokens,
                accepted_per_pos=accepted_per_pos,
            )
    except (aiohttp.ClientError, asyncio.TimeoutError):
        return None

get_first_model_from_server async

get_first_model_from_server(
    base_url: str, headers: dict | None = None
) -> tuple[str, str]

Fetch the first model from the server's /v1/models endpoint.

Source code in vllm/benchmarks/serve.py
async def get_first_model_from_server(
    base_url: str, headers: dict | None = None
) -> tuple[str, str]:
    """Fetch the first model from the server's /v1/models endpoint."""
    models_url = f"{base_url}/v1/models"
    async with aiohttp.ClientSession() as session:
        try:
            async with session.get(models_url, headers=headers) as response:
                response.raise_for_status()
                data = await response.json()
                if "data" in data and len(data["data"]) > 0:
                    return data["data"][0]["id"], data["data"][0]["root"]
                else:
                    raise ValueError(
                        f"No models found on the server at {base_url}. "
                        "Make sure the server is running and has models loaded."
                    )
        except (aiohttp.ClientError, json.JSONDecodeError) as e:
            raise RuntimeError(
                f"Failed to fetch models from server at {models_url}. "
                "Check that:\n"
                "1. The server is running\n"
                "2. The server URL is correct\n"
                f"Error: {e}"
            ) from e

get_request async

get_request(
    input_requests: list[SampleRequest],
    request_rate: float,
    burstiness: float = 1.0,
    ramp_up_strategy: Literal["linear", "exponential"]
    | None = None,
    ramp_up_start_rps: int | None = None,
    ramp_up_end_rps: int | None = None,
) -> AsyncGenerator[tuple[SampleRequest, float], None]

Asynchronously generates requests at a specified rate with OPTIONAL burstiness and OPTIONAL ramp-up strategy.

Parameters:

Name Type Description Default
input_requests list[SampleRequest]

A list of input requests, each represented as a SampleRequest.

required
request_rate float

The rate at which requests are generated (requests/s).

required
burstiness optional

The burstiness factor of the request generation. Only takes effect when request_rate is not inf. Default value is 1, which follows a Poisson process. Otherwise, the request intervals follow a gamma distribution. A lower burstiness value (0 < burstiness < 1) results in more bursty requests, while a higher burstiness value (burstiness > 1) results in a more uniform arrival of requests.

1.0
ramp_up_strategy optional

The ramp-up strategy. Can be "linear" or "exponential". If None, uses constant request rate (specified by request_rate).

None
ramp_up_start_rps optional

The starting request rate for ramp-up.

None
ramp_up_end_rps optional

The ending request rate for ramp-up.

None
Source code in vllm/benchmarks/serve.py
async def get_request(
    input_requests: list[SampleRequest],
    request_rate: float,
    burstiness: float = 1.0,
    ramp_up_strategy: Literal["linear", "exponential"] | None = None,
    ramp_up_start_rps: int | None = None,
    ramp_up_end_rps: int | None = None,
) -> AsyncGenerator[tuple[SampleRequest, float], None]:
    """
    Asynchronously generates requests at a specified rate
    with OPTIONAL burstiness and OPTIONAL ramp-up strategy.

    Args:
        input_requests:
            A list of input requests, each represented as a SampleRequest.
        request_rate:
            The rate at which requests are generated (requests/s).
        burstiness (optional):
            The burstiness factor of the request generation.
            Only takes effect when request_rate is not inf.
            Default value is 1, which follows a Poisson process.
            Otherwise, the request intervals follow a gamma distribution.
            A lower burstiness value (0 < burstiness < 1) results
            in more bursty requests, while a higher burstiness value
            (burstiness > 1) results in a more uniform arrival of requests.
        ramp_up_strategy (optional):
            The ramp-up strategy. Can be "linear" or "exponential".
            If None, uses constant request rate (specified by request_rate).
        ramp_up_start_rps (optional):
            The starting request rate for ramp-up.
        ramp_up_end_rps (optional):
            The ending request rate for ramp-up.
    """
    assert burstiness > 0, (
        f"A positive burstiness factor is expected, but given {burstiness}."
    )
    # Convert to list to get length for ramp-up calculations
    if isinstance(input_requests, Iterable) and not isinstance(input_requests, list):
        input_requests = list(input_requests)

    total_requests = len(input_requests)
    assert total_requests > 0, "No requests provided."

    # Precompute delays among requests to minimize request send laggings
    request_rates = []
    delay_ts = []
    for request_index, request in enumerate(input_requests):
        current_request_rate = _get_current_request_rate(
            ramp_up_strategy,
            ramp_up_start_rps,
            ramp_up_end_rps,
            request_index,
            total_requests,
            request_rate,
        )
        assert current_request_rate > 0.0, (
            f"Obtained non-positive request rate {current_request_rate}."
        )
        request_rates.append(current_request_rate)
        if current_request_rate == float("inf"):
            delay_ts.append(0)
        elif burstiness == float("inf"):
            # when burstiness tends to infinity, the delay time becomes constant
            # and tends to the inverse of the request rate
            delay_ts.append(1.0 / current_request_rate)
        else:
            theta = 1.0 / (current_request_rate * burstiness)

            # Sample the request interval from the gamma distribution.
            # If burstiness is 1, it follows exponential distribution.
            delay_ts.append(np.random.gamma(shape=burstiness, scale=theta))

    # Calculate the cumulative delay time from the first sent out requests.
    for i in range(1, len(delay_ts)):
        delay_ts[i] += delay_ts[i - 1]
    if ramp_up_strategy is None and delay_ts[-1] != 0:
        # When ramp_up_strategy is not set, we assume the request rate is fixed
        # and all requests should be sent in target_total_delay_s, the following
        # logic would re-scale delay time to ensure the final delay_ts
        # align with target_total_delay_s.
        #
        # NOTE: If we simply accumulate the random delta values
        # from the gamma distribution, their sum would have 1-2% gap
        # from target_total_delay_s. The purpose of the following logic is to
        # close the gap for stabilizing the throughput data
        # from different random seeds.
        target_total_delay_s = total_requests / request_rate
        normalize_factor = target_total_delay_s / delay_ts[-1]
        delay_ts = [delay * normalize_factor for delay in delay_ts]

    start_ts = time.time()
    for request_index, request in enumerate(input_requests):
        if delay_ts[request_index] > 0:
            current_ts = time.time()
            sleep_interval_s = start_ts + delay_ts[request_index] - current_ts
            if sleep_interval_s > 0:
                await asyncio.sleep(sleep_interval_s)
        yield request, request_rates[request_index]

main

main(args: Namespace) -> dict[str, Any]
Source code in vllm/benchmarks/serve.py
def main(args: argparse.Namespace) -> dict[str, Any]:
    return asyncio.run(main_async(args))

main_async async

main_async(args: Namespace) -> dict[str, Any]
Source code in vllm/benchmarks/serve.py
async def main_async(args: argparse.Namespace) -> dict[str, Any]:
    print(args)
    random.seed(args.seed)
    np.random.seed(args.seed)

    # Validate ramp-up arguments
    if args.ramp_up_strategy is not None:
        if args.request_rate != float("inf"):
            raise ValueError(
                "When using ramp-up, do not specify --request-rate. "
                "The request rate will be controlled by ramp-up parameters. "
                "Please remove the --request-rate argument."
            )
        if args.ramp_up_start_rps is None or args.ramp_up_end_rps is None:
            raise ValueError(
                "When using --ramp-up-strategy, both --ramp-up-start-rps and "
                "--ramp-up-end-rps must be specified"
            )
        if args.ramp_up_start_rps < 0 or args.ramp_up_end_rps < 0:
            raise ValueError("Ramp-up start and end RPS must be non-negative")
        if args.ramp_up_start_rps > args.ramp_up_end_rps:
            raise ValueError("Ramp-up start RPS must be less than end RPS")
        if args.ramp_up_strategy == "exponential" and args.ramp_up_start_rps == 0:
            raise ValueError("For exponential ramp-up, the start RPS cannot be 0.")

    label = args.label

    if args.base_url is not None:
        api_url = f"{args.base_url}{args.endpoint}"
        base_url = f"{args.base_url}"
    else:
        host_port = join_host_port(args.host, args.port)
        api_url = f"http://{host_port}{args.endpoint}"
        base_url = f"http://{host_port}"

    # Headers
    headers = None
    if args.header:
        headers = {}
        for item in args.header:
            if "=" in item:
                kvstring = item.split("=", 1)
                headers[kvstring[0].strip()] = kvstring[1].strip()
            else:
                raise ValueError("Invalid header format. Please use KEY=VALUE format.")

    # Fetch model from server if not specified
    if args.model is None:
        print("Model not specified, fetching first model from server...")
        model_name, model_id = await get_first_model_from_server(base_url, headers)
        print(f"First model name: {model_name}, first model id: {model_id}")
    else:
        model_name = args.served_model_name
        model_id = args.model

    tokenizer_id = args.tokenizer if args.tokenizer is not None else model_id
    tokenizer_mode = args.tokenizer_mode

    tokenizer = get_tokenizer(
        tokenizer_id,
        tokenizer_mode=tokenizer_mode,
        trust_remote_code=args.trust_remote_code,
    )

    if args.dataset_name is None:
        raise ValueError(
            "Please specify '--dataset-name' and the corresponding "
            "'--dataset-path' if required."
        )

    # Map general --input-len and --output-len to all dataset-specific arguments
    if args.input_len is not None:
        args.random_input_len = args.input_len
        args.sonnet_input_len = args.input_len

    if args.output_len is not None:
        args.random_output_len = args.output_len
        args.sonnet_output_len = args.output_len
        args.sharegpt_output_len = args.output_len
        args.custom_output_len = args.output_len
        args.hf_output_len = args.output_len
        args.spec_bench_output_len = args.output_len
        args.prefix_repetition_output_len = args.output_len

    # when using random datasets, default to ignoring EOS
    # so generation runs to the requested length
    if (
        args.dataset_name in ("random", "random-mm")
        and args.backend in OPENAI_COMPATIBLE_BACKENDS
    ):
        args.ignore_eos = True

    # Load the dataset.
    input_requests = get_samples(args, tokenizer)
    goodput_config_dict = check_goodput_args(args)

    backend = args.backend
    task_type = (
        TaskType.POOLING
        if "embeddings" in backend or "rerank" in backend
        else TaskType.GENERATION
    )

    # Collect the sampling parameters.
    if task_type == TaskType.GENERATION:
        sampling_params = {
            k: v
            for k, v in {
                "top_p": args.top_p,
                "top_k": args.top_k,
                "min_p": args.min_p,
                "temperature": args.temperature,
                "frequency_penalty": args.frequency_penalty,
                "presence_penalty": args.presence_penalty,
                "repetition_penalty": args.repetition_penalty,
            }.items()
            if v is not None
        }

        # Sampling parameters are only supported by openai-compatible backend.
        if sampling_params and args.backend not in OPENAI_COMPATIBLE_BACKENDS:
            raise ValueError(
                "Sampling parameters are only supported by openai-compatible backends."
            )

        if "temperature" not in sampling_params:
            sampling_params["temperature"] = 0.0  # Default to greedy decoding.

        default_percentile_metrics = "ttft,tpot,itl"
    else:
        sampling_params = {}
        default_percentile_metrics = "e2el"

    extra_body = args.extra_body or {}
    extra_body = {**sampling_params, **extra_body}

    percentile_metrics: str = args.percentile_metrics or default_percentile_metrics

    # Avoid GC processing "static" data - reduce pause times.
    freeze_gc_heap()

    benchmark_result = await benchmark(
        task_type=task_type,
        endpoint_type=backend,
        api_url=api_url,
        base_url=base_url,
        model_id=model_id,
        model_name=model_name,
        tokenizer=tokenizer,
        input_requests=input_requests,
        logprobs=args.logprobs,
        request_rate=args.request_rate,
        burstiness=args.burstiness,
        disable_tqdm=args.disable_tqdm,
        num_warmups=args.num_warmups,
        profile=args.profile,
        selected_percentile_metrics=percentile_metrics.split(","),
        selected_percentiles=[float(p) for p in args.metric_percentiles.split(",")],
        ignore_eos=args.ignore_eos,
        goodput_config_dict=goodput_config_dict,
        max_concurrency=args.max_concurrency,
        lora_modules=args.lora_modules,
        extra_headers=headers,
        extra_body=extra_body,
        ramp_up_strategy=args.ramp_up_strategy,
        ramp_up_start_rps=args.ramp_up_start_rps,
        ramp_up_end_rps=args.ramp_up_end_rps,
        ready_check_timeout_sec=args.ready_check_timeout_sec,
    )

    # Save config and results to json
    result_json: dict[str, Any] = {}

    # Setup
    current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
    result_json["date"] = current_dt
    result_json["endpoint_type"] = args.backend  # for backward compatibility
    result_json["backend"] = args.backend
    result_json["label"] = label
    result_json["model_id"] = model_id
    result_json["tokenizer_id"] = tokenizer_id
    result_json["num_prompts"] = args.num_prompts

    # Metadata
    if args.metadata:
        for item in args.metadata:
            if "=" in item:
                kvstring = item.split("=", 1)
                result_json[kvstring[0].strip()] = kvstring[1].strip()
            else:
                raise ValueError(
                    "Invalid metadata format. Please use KEY=VALUE format."
                )

    # Traffic
    result_json["request_rate"] = (
        args.request_rate if args.request_rate < float("inf") else "inf"
    )
    result_json["burstiness"] = args.burstiness
    result_json["max_concurrency"] = args.max_concurrency

    if args.ramp_up_strategy is not None:
        result_json["ramp_up_strategy"] = args.ramp_up_strategy
        result_json["ramp_up_start_rps"] = args.ramp_up_start_rps
        result_json["ramp_up_end_rps"] = args.ramp_up_end_rps

    # Merge with benchmark result
    result_json = {**result_json, **benchmark_result}

    if not args.save_detailed:
        # Remove fields with too many data points
        for field in [
            "input_lens",
            "output_lens",
            "ttfts",
            "itls",
            "generated_texts",
            "errors",
        ]:
            if field in result_json:
                del result_json[field]
            if field in benchmark_result:
                del benchmark_result[field]

        # Save to file
    if args.save_result or args.append_result:
        base_model_id = model_id.split("/")[-1]
        max_concurrency_str = (
            f"-concurrency{args.max_concurrency}"
            if args.max_concurrency is not None
            else ""
        )
        label = label or args.backend
        if args.ramp_up_strategy is not None:
            file_name = f"{label}-ramp-up-{args.ramp_up_strategy}-{args.ramp_up_start_rps}qps-{args.ramp_up_end_rps}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json"  # noqa
        else:
            file_name = f"{label}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json"  # noqa
        if args.result_filename:
            file_name = args.result_filename
        if args.result_dir:
            os.makedirs(args.result_dir, exist_ok=True)
            file_name = os.path.join(args.result_dir, file_name)
        with open(
            file_name, mode="a+" if args.append_result else "w", encoding="utf-8"
        ) as outfile:
            # Append a newline.
            if args.append_result and outfile.tell() != 0:
                outfile.write("\n")
            json.dump(result_json, outfile)
        save_to_pytorch_benchmark_format(args, result_json, file_name)

    return result_json

parse_goodput

parse_goodput(slo_pairs)
Source code in vllm/benchmarks/serve.py
def parse_goodput(slo_pairs):
    goodput_config_dict = {}
    try:
        for slo_pair in slo_pairs:
            slo_name, slo_val = slo_pair.split(":")
            goodput_config_dict[slo_name] = float(slo_val)
    except ValueError as err:
        raise argparse.ArgumentTypeError(
            "Invalid format found for service level objectives. "
            'Specify service level objectives for goodput as "KEY:VALUE" '
            "pairs, where the key is a metric name, and the value is a "
            "number in milliseconds."
        ) from err
    return goodput_config_dict

save_to_pytorch_benchmark_format

save_to_pytorch_benchmark_format(
    args: Namespace, results: dict[str, Any], file_name: str
) -> None
Source code in vllm/benchmarks/serve.py
def save_to_pytorch_benchmark_format(
    args: argparse.Namespace, results: dict[str, Any], file_name: str
) -> None:
    metrics = [
        "median_ttft_ms",
        "mean_ttft_ms",
        "std_ttft_ms",
        "p99_ttft_ms",
        "mean_tpot_ms",
        "median_tpot_ms",
        "std_tpot_ms",
        "p99_tpot_ms",
        "median_itl_ms",
        "mean_itl_ms",
        "std_itl_ms",
        "p99_itl_ms",
    ]
    # These raw data might be useful, but they are rather big. They can be added
    # later if needed
    ignored_metrics = ["ttfts", "itls", "generated_texts", "errors"]
    pt_records = convert_to_pytorch_benchmark_format(
        args=args,
        metrics={k: [results[k]] for k in metrics if k in results},
        extra_info={
            k: results[k]
            for k in results
            if k not in metrics and k not in ignored_metrics
        },
    )
    if pt_records:
        # Don't use json suffix here as we don't want CI to pick it up
        pt_file = f"{os.path.splitext(file_name)[0]}.pytorch.json"
        write_to_json(pt_file, pt_records)