vllm.model_executor.layers.activation ¶
Custom activation functions.
_ACTIVATION_AND_MUL_REGISTRY module-attribute ¶
_ACTIVATION_AND_MUL_REGISTRY = LazyDict(
{
"gelu": lambda: GeluAndMul(),
"silu": lambda: SiluAndMul(),
"geglu": lambda: GeluAndMul(),
"swigluoai": lambda *args,
**kwargs: SwigluOAIAndMul(*args, **kwargs),
}
)
_ACTIVATION_REGISTRY module-attribute ¶
_ACTIVATION_REGISTRY = LazyDict(
{
"gelu": lambda: GELU(),
"gelu_fast": lambda: FastGELU(),
"gelu_new": lambda: NewGELU(),
"gelu_pytorch_tanh": lambda: (
warning_once(
"[ROCm] PyTorch's native GELU with tanh approximation is unstable. Falling back to GELU(approximate='none')."
),
GELU(approximate="none"),
)[1]
if is_rocm()
else GELU(approximate="tanh"),
"relu": lambda: ReLU(),
"relu2": lambda: ReLUSquaredActivation(),
"silu": lambda: SiLU(),
"quick_gelu": lambda: QuickGELU(),
"tanh": lambda: Tanh(),
"sigmoid": lambda: Sigmoid(),
"xielu": lambda: XIELU(),
}
)
FastGELU ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
FatreluAndMul ¶
Bases: CustomOp
An activation function for FATReLU.
The function computes x -> FATReLU(x[:d]) * x[d:] where d = x.shape[-1] // 2. This is used in openbmb/MiniCPM-S-1B-sft.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
GeluAndMul ¶
Bases: CustomOp
An activation function for GeGLU.
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d) return: (batch_size, seq_len, d) or (num_tokens, d)
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
__init__(approximate: str = 'none')
Source code in vllm/model_executor/layers/activation.py
forward_cuda ¶
forward_native ¶
PyTorch-native implementation equivalent to forward().
Source code in vllm/model_executor/layers/activation.py
forward_xpu ¶
GeluAndMulSparse ¶
Bases: CustomOp
An activation function for GeluAndMulSparse. This activation function is used in Gemma3n. It computes: up_proj = self.up_proj(x) gate_proj = self.gate_proj(x) gate_proj = self._gaussian_topk(gate_proj) # sparsity activations = self.act_fn(gate_proj) # gelu down_proj = self.down_proj(activations * up_proj) Shapes: x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
Source code in vllm/model_executor/layers/activation.py
_gaussian_topk ¶
Get % sparse percentile of the Gaussian distribution.
Source code in vllm/model_executor/layers/activation.py
forward_cuda ¶
forward_native ¶
PyTorch-native implementation equivalent to forward().
Source code in vllm/model_executor/layers/activation.py
MulAndSilu ¶
Bases: CustomOp
An activation function for SwiGLU.
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
NewGELU ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
QuickGELU ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
ReLUSquaredActivation ¶
Bases: CustomOp
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
Source code in vllm/model_executor/layers/activation.py
ScaledActivation ¶
Bases: Module
An activation function with post-scale parameters.
This is used for some quantization methods like AWQ.
Source code in vllm/model_executor/layers/activation.py
scales instance-attribute ¶
scales = Parameter(
empty(
intermediate_size_per_partition, dtype=params_dtype
)
)
__init__ ¶
__init__(
act_module: Module,
intermediate_size: int,
input_is_parallel: bool = True,
params_dtype: dtype | None = None,
)
Source code in vllm/model_executor/layers/activation.py
forward ¶
weight_loader ¶
weight_loader(param: Parameter, loaded_weight: Tensor)
Source code in vllm/model_executor/layers/activation.py
SiluAndMul ¶
Bases: CustomOp
An activation function for SwiGLU.
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
SwigluOAIAndMul ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
forward_cuda ¶
Source code in vllm/model_executor/layers/activation.py
forward_native ¶
PyTorch-native implementation equivalent to forward().
Source code in vllm/model_executor/layers/activation.py
XIELU ¶
Bases: CustomOp
Applies the xIELU activation function introduced in https://arxiv.org/abs/2411.13010 If the user has installed the nickjbrowning/XIELU, we import xIELU CUDA Otherwise, we emit a single warning and use xIELU Python
Source code in vllm/model_executor/layers/activation.py
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 | |
__init__ ¶
__init__(
alpha_p_init: float = 0.8,
alpha_n_init: float = 0.8,
beta: float = 0.5,
eps: float = -1e-06,
dtype: dtype = bfloat16,
with_vector_loads: bool = False,
)
Source code in vllm/model_executor/layers/activation.py
_xielu_cuda ¶
Firewall function to prevent torch.compile from seeing .item()
Source code in vllm/model_executor/layers/activation.py
_xielu_python ¶
Source code in vllm/model_executor/layers/activation.py
forward_cuda ¶
forward_native ¶
Source code in vllm/model_executor/layers/activation.py
get_act_and_mul_fn ¶
Get an activation-and-mul (i.e. SiluAndMul) function by name.
Source code in vllm/model_executor/layers/activation.py
get_act_fn ¶
Get an activation function by name.