vllm.model_executor.layers.pooler.seqwise ¶
Poolers that produce an output aggregating all tokens in the sequence.
Modules:
| Name | Description |
|---|---|
heads | |
methods | |
poolers | |
SequencePoolerHeadOutput module-attribute ¶
SequencePoolingFn module-attribute ¶
SequencePoolingFn: TypeAlias = Callable[
[Tensor, PoolingMetadata], SequencePoolingMethodOutput
]
SequencePoolingHeadFn module-attribute ¶
SequencePoolingHeadFn: TypeAlias = Callable[
[SequencePoolingMethodOutput, PoolingMetadata],
SequencePoolerHeadOutput,
]
SequencePoolingMethodOutput module-attribute ¶
__all__ module-attribute ¶
__all__ = [
"SequencePoolerHead",
"SequencePoolerHeadOutput",
"ClassifierPoolerHead",
"EmbeddingPoolerHead",
"SequencePoolingMethod",
"SequencePoolingMethodOutput",
"CLSPool",
"LastPool",
"MeanPool",
"get_seq_pooling_method",
"SequencePooler",
"SequencePoolingFn",
"SequencePoolingHeadFn",
"SequencePoolerOutput",
"pooler_for_classify",
"pooler_for_embed",
]
CLSPool ¶
Bases: SequencePoolingMethod
Source code in vllm/model_executor/layers/pooler/seqwise/methods.py
forward ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> SequencePoolingMethodOutput
Source code in vllm/model_executor/layers/pooler/seqwise/methods.py
ClassifierPoolerHead ¶
Bases: SequencePoolerHead
Source code in vllm/model_executor/layers/pooler/seqwise/heads.py
__init__ ¶
__init__(
classifier: ClassifierFn | None = None,
logit_bias: float | None = None,
head_dtype: dtype | str | None = None,
activation: ActivationFn | None = None,
) -> None
Source code in vllm/model_executor/layers/pooler/seqwise/heads.py
forward ¶
forward(
pooled_data: SequencePoolingMethodOutput,
pooling_metadata: PoolingMetadata,
) -> SequencePoolerHeadOutput
Source code in vllm/model_executor/layers/pooler/seqwise/heads.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
EmbeddingPoolerHead ¶
Bases: SequencePoolerHead
Source code in vllm/model_executor/layers/pooler/seqwise/heads.py
__init__ ¶
__init__(
projector: ProjectorFn | None = None,
head_dtype: dtype | str | None = None,
activation: ActivationFn | None = None,
) -> None
Source code in vllm/model_executor/layers/pooler/seqwise/heads.py
forward ¶
forward(
pooled_data: SequencePoolingMethodOutput,
pooling_metadata: PoolingMetadata,
) -> SequencePoolerHeadOutput
Source code in vllm/model_executor/layers/pooler/seqwise/heads.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
LastPool ¶
Bases: SequencePoolingMethod
Source code in vllm/model_executor/layers/pooler/seqwise/methods.py
forward ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> SequencePoolingMethodOutput
Source code in vllm/model_executor/layers/pooler/seqwise/methods.py
MeanPool ¶
Bases: SequencePoolingMethod
Source code in vllm/model_executor/layers/pooler/seqwise/methods.py
forward ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> SequencePoolingMethodOutput
Source code in vllm/model_executor/layers/pooler/seqwise/methods.py
SequencePooler ¶
Bases: Pooler
A layer that pools specific information from hidden states.
This layer does the following: 1. Extracts specific tokens or aggregates data based on pooling method. 2. Postprocesses the output based on pooling head. 3. Returns structured results as PoolerOutput.
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
__init__ ¶
__init__(
pooling: SequencePoolingMethod | SequencePoolingFn,
head: SequencePoolerHead | SequencePoolingHeadFn,
) -> None
forward ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> SequencePoolerOutput
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
SequencePoolerHead ¶
Source code in vllm/model_executor/layers/pooler/seqwise/heads.py
forward abstractmethod ¶
forward(
pooled_data: SequencePoolingMethodOutput,
pooling_metadata: PoolingMetadata,
) -> SequencePoolerHeadOutput
SequencePoolingMethod ¶
Source code in vllm/model_executor/layers/pooler/seqwise/methods.py
forward abstractmethod ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> SequencePoolingMethodOutput
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
get_seq_pooling_method ¶
get_seq_pooling_method(
pooling_type: SequencePoolingType | str,
)
Source code in vllm/model_executor/layers/pooler/seqwise/methods.py
pooler_for_classify ¶
pooler_for_classify(
pooler_config: PoolerConfig,
*,
pooling: SequencePoolingMethod
| SequencePoolingFn
| None = None,
classifier: ClassifierFn | None = None,
act_fn: PoolerActivation | str | None = None,
)
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
pooler_for_embed ¶
pooler_for_embed(pooler_config: PoolerConfig)