vllm.model_executor.layers.pooler.seqwise.poolers ¶
SequencePoolingFn module-attribute ¶
SequencePoolingFn: TypeAlias = Callable[
[Tensor, PoolingMetadata], SequencePoolingMethodOutput
]
SequencePoolingHeadFn module-attribute ¶
SequencePoolingHeadFn: TypeAlias = Callable[
[SequencePoolingMethodOutput, PoolingMetadata],
SequencePoolerHeadOutput,
]
SequencePooler ¶
Bases: Pooler
A layer that pools specific information from hidden states.
This layer does the following: 1. Extracts specific tokens or aggregates data based on pooling method. 2. Postprocesses the output based on pooling head. 3. Returns structured results as PoolerOutput.
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
__init__ ¶
__init__(
pooling: SequencePoolingMethod | SequencePoolingFn,
head: SequencePoolerHead | SequencePoolingHeadFn,
) -> None
forward ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> SequencePoolerOutput
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
pooler_for_classify ¶
pooler_for_classify(
pooler_config: PoolerConfig,
*,
pooling: SequencePoolingMethod
| SequencePoolingFn
| None = None,
classifier: ClassifierFn | None = None,
act_fn: PoolerActivation | str | None = None,
)
Source code in vllm/model_executor/layers/pooler/seqwise/poolers.py
pooler_for_embed ¶
pooler_for_embed(pooler_config: PoolerConfig)