vllm.model_executor.layers.pooler.tokwise ¶
Poolers that produce an output for each token in the sequence.
Modules:
| Name | Description |
|---|---|
heads | |
methods | |
poolers | |
TokenPoolingMethodOutputItem module-attribute ¶
__all__ module-attribute ¶
__all__ = [
"TokenPoolerHead",
"TokenPoolerHeadOutputItem",
"TokenClassifierPoolerHead",
"TokenEmbeddingPoolerHead",
"TokenPoolingMethod",
"TokenPoolingMethodOutputItem",
"AllPool",
"StepPool",
"get_tok_pooling_method",
"TokenPooler",
"TokenPoolerOutput",
"pooler_for_token_classify",
"pooler_for_token_embed",
]
AllPool ¶
Bases: TokenPoolingMethod
Source code in vllm/model_executor/layers/pooler/tokwise/methods.py
__init__ ¶
forward ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> list[TokenPoolingMethodOutputItem]
Source code in vllm/model_executor/layers/pooler/tokwise/methods.py
StepPool ¶
Bases: AllPool
Source code in vllm/model_executor/layers/pooler/tokwise/methods.py
forward ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> list[TokenPoolingMethodOutputItem]
Source code in vllm/model_executor/layers/pooler/tokwise/methods.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
TokenClassifierPoolerHead ¶
Bases: TokenPoolerHead
Source code in vllm/model_executor/layers/pooler/tokwise/heads.py
__init__ ¶
__init__(
classifier: ClassifierFn | None = None,
logit_bias: float | None = None,
head_dtype: dtype | str | None = None,
activation: ActivationFn | None = None,
) -> None
Source code in vllm/model_executor/layers/pooler/tokwise/heads.py
forward_chunk ¶
forward_chunk(
pooled_data: TokenPoolingMethodOutputItem,
pooling_param: PoolingParams,
) -> TokenPoolerHeadOutputItem
Source code in vllm/model_executor/layers/pooler/tokwise/heads.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
TokenEmbeddingPoolerHead ¶
Bases: TokenPoolerHead
Source code in vllm/model_executor/layers/pooler/tokwise/heads.py
__init__ ¶
__init__(
head_dtype: dtype | str | None = None,
projector: ProjectorFn | None = None,
activation: ActivationFn | None = None,
) -> None
Source code in vllm/model_executor/layers/pooler/tokwise/heads.py
forward_chunk ¶
forward_chunk(
pooled_data: TokenPoolingMethodOutputItem,
pooling_param: PoolingParams,
) -> TokenPoolerHeadOutputItem
Source code in vllm/model_executor/layers/pooler/tokwise/heads.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
TokenPooler ¶
Bases: Pooler
A layer that pools specific information from hidden states.
This layer does the following: 1. Extracts specific tokens or aggregates data based on pooling method. 2. Postprocesses the output based on pooling head. 3. Returns structured results as PoolerOutput.
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
__init__ ¶
__init__(
pooling: TokenPoolingMethod | TokenPoolingFn,
head: TokenPoolerHead | TokenPoolingHeadFn,
) -> None
forward ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> TokenPoolerOutput
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
TokenPoolerHead ¶
Source code in vllm/model_executor/layers/pooler/tokwise/heads.py
forward ¶
forward(
pooled_data: list[TokenPoolingMethodOutputItem],
pooling_metadata: PoolingMetadata,
) -> list[TokenPoolerHeadOutputItem]
Source code in vllm/model_executor/layers/pooler/tokwise/heads.py
forward_chunk abstractmethod ¶
forward_chunk(
pooled_data: TokenPoolingMethodOutputItem,
pooling_param: PoolingParams,
) -> TokenPoolerHeadOutputItem
TokenPoolingMethod ¶
Source code in vllm/model_executor/layers/pooler/tokwise/methods.py
forward abstractmethod ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> list[TokenPoolingMethodOutputItem]
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
get_tok_pooling_method ¶
get_tok_pooling_method(
pooling_type: TokenPoolingType | str,
)
Source code in vllm/model_executor/layers/pooler/tokwise/methods.py
pooler_for_token_classify ¶
pooler_for_token_classify(
pooler_config: PoolerConfig,
*,
pooling: TokenPoolingMethod
| TokenPoolingFn
| None = None,
classifier: ClassifierFn | None = None,
act_fn: PoolerActivation | str | None = None,
)
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
pooler_for_token_embed ¶
pooler_for_token_embed(pooler_config: PoolerConfig)