vllm.model_executor.layers.pooler.tokwise.poolers ¶
TokenPoolingFn module-attribute ¶
TokenPoolingFn: TypeAlias = Callable[
[Tensor, PoolingMetadata],
list[TokenPoolingMethodOutputItem],
]
TokenPoolingHeadFn module-attribute ¶
TokenPoolingHeadFn: TypeAlias = Callable[
[list[TokenPoolingMethodOutputItem], PoolingMetadata],
list[TokenPoolerHeadOutputItem],
]
TokenPooler ¶
Bases: Pooler
A layer that pools specific information from hidden states.
This layer does the following: 1. Extracts specific tokens or aggregates data based on pooling method. 2. Postprocesses the output based on pooling head. 3. Returns structured results as PoolerOutput.
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
__init__ ¶
__init__(
pooling: TokenPoolingMethod | TokenPoolingFn,
head: TokenPoolerHead | TokenPoolingHeadFn,
) -> None
forward ¶
forward(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> TokenPoolerOutput
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
pooler_for_token_classify ¶
pooler_for_token_classify(
pooler_config: PoolerConfig,
*,
pooling: TokenPoolingMethod
| TokenPoolingFn
| None = None,
classifier: ClassifierFn | None = None,
act_fn: PoolerActivation | str | None = None,
)
Source code in vllm/model_executor/layers/pooler/tokwise/poolers.py
pooler_for_token_embed ¶
pooler_for_token_embed(pooler_config: PoolerConfig)