Skip to content

vllm.model_executor.layers.quantization.modelopt

KV_CACHE_QUANT_ALGOS module-attribute

KV_CACHE_QUANT_ALGOS = ['FP8']

QUANT_ALGOS module-attribute

QUANT_ALGOS = [
    "FP8",
    "FP8_PER_CHANNEL_PER_TOKEN",
    "FP8_PB_WO",
    "NVFP4",
]

logger module-attribute

logger = init_logger(__name__)

ModelOptFp8Config

Bases: ModelOptQuantConfigBase

Config class for ModelOpt FP8.

Source code in vllm/model_executor/layers/quantization/modelopt.py
class ModelOptFp8Config(ModelOptQuantConfigBase):
    """Config class for ModelOpt FP8."""

    def __init__(
        self,
        quant_method: str,
        is_checkpoint_fp8_serialized: bool,
        kv_cache_quant_method: str | None,
        exclude_modules: list[str],
    ) -> None:
        super().__init__(exclude_modules)
        self.quant_method = quant_method
        self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
        self.kv_cache_quant_method = kv_cache_quant_method
        if is_checkpoint_fp8_serialized:
            logger.warning(
                "Detected ModelOpt fp8 checkpoint (quant_algo=%s). Please note "
                "that the format is experimental and could change.",
                quant_method,
            )

        # Select LinearMethod implementation based on quant_algo.
        if self.quant_method == "FP8":
            self.LinearMethodCls = ModelOptFp8LinearMethod
        elif self.quant_method == "FP8_PER_CHANNEL_PER_TOKEN":
            self.LinearMethodCls = ModelOptFp8PcPtLinearMethod
        elif self.quant_method == "FP8_PB_WO":
            self.LinearMethodCls = ModelOptFp8PbWoLinearMethod
        else:
            raise ValueError(
                "Unsupported ModelOpt FP8 quant_algo for vLLM: "
                f"{self.quant_method}. Supported: FP8 / "
                "FP8_PER_CHANNEL_PER_TOKEN / FP8_PB_WO."
            )

    def get_name(self) -> QuantizationMethods:
        return "modelopt"

    def get_supported_act_dtypes(self) -> list[torch.dtype]:
        return [torch.bfloat16, torch.half]

    @classmethod
    def get_min_capability(cls) -> int:
        return 89

    @classmethod
    def override_quantization_method(
        cls, hf_quant_cfg, user_quant
    ) -> QuantizationMethods | None:
        """Detect if this ModelOpt config should be used based on
        quantization config."""

        if hf_quant_cfg is None:
            return None

        # Use the community standard 'quant_method'
        quant_method = hf_quant_cfg.get("quant_method", "").lower()

        # Only proceed if the method is explicitly "modelopt"
        if quant_method != "modelopt":
            return None

        # Look for ModelOpt-specific config structure
        if "quantization" in hf_quant_cfg:
            quant_config = hf_quant_cfg["quantization"]
            if isinstance(quant_config, dict):
                quant_algo = str(quant_config.get("quant_algo", ""))
                if "FP8" in quant_algo.upper():
                    return "modelopt"
        else:
            # Check for compressed-tensors style config with specific quant_algo
            quant_algo = str(hf_quant_cfg.get("quant_algo", ""))
            if "FP8" in quant_algo.upper():
                return "modelopt"

        return None

    @classmethod
    def _from_config(
        cls,
        *,
        quant_method: str,
        kv_cache_quant_method: str | None,
        exclude_modules: list[str],
        original_config: dict[str, Any],
        **kwargs: Any,
    ) -> "ModelOptFp8Config":
        is_checkpoint_fp8_serialized = "FP8" in quant_method

        return cls(
            quant_method,
            is_checkpoint_fp8_serialized,
            kv_cache_quant_method,
            exclude_modules,
        )

LinearMethodCls instance-attribute

LinearMethodCls = ModelOptFp8LinearMethod

is_checkpoint_fp8_serialized instance-attribute

is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized

kv_cache_quant_method instance-attribute

kv_cache_quant_method = kv_cache_quant_method

quant_method instance-attribute

quant_method = quant_method

__init__

__init__(
    quant_method: str,
    is_checkpoint_fp8_serialized: bool,
    kv_cache_quant_method: str | None,
    exclude_modules: list[str],
) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(
    self,
    quant_method: str,
    is_checkpoint_fp8_serialized: bool,
    kv_cache_quant_method: str | None,
    exclude_modules: list[str],
) -> None:
    super().__init__(exclude_modules)
    self.quant_method = quant_method
    self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
    self.kv_cache_quant_method = kv_cache_quant_method
    if is_checkpoint_fp8_serialized:
        logger.warning(
            "Detected ModelOpt fp8 checkpoint (quant_algo=%s). Please note "
            "that the format is experimental and could change.",
            quant_method,
        )

    # Select LinearMethod implementation based on quant_algo.
    if self.quant_method == "FP8":
        self.LinearMethodCls = ModelOptFp8LinearMethod
    elif self.quant_method == "FP8_PER_CHANNEL_PER_TOKEN":
        self.LinearMethodCls = ModelOptFp8PcPtLinearMethod
    elif self.quant_method == "FP8_PB_WO":
        self.LinearMethodCls = ModelOptFp8PbWoLinearMethod
    else:
        raise ValueError(
            "Unsupported ModelOpt FP8 quant_algo for vLLM: "
            f"{self.quant_method}. Supported: FP8 / "
            "FP8_PER_CHANNEL_PER_TOKEN / FP8_PB_WO."
        )

_from_config classmethod

_from_config(
    *,
    quant_method: str,
    kv_cache_quant_method: str | None,
    exclude_modules: list[str],
    original_config: dict[str, Any],
    **kwargs: Any,
) -> ModelOptFp8Config
Source code in vllm/model_executor/layers/quantization/modelopt.py
@classmethod
def _from_config(
    cls,
    *,
    quant_method: str,
    kv_cache_quant_method: str | None,
    exclude_modules: list[str],
    original_config: dict[str, Any],
    **kwargs: Any,
) -> "ModelOptFp8Config":
    is_checkpoint_fp8_serialized = "FP8" in quant_method

    return cls(
        quant_method,
        is_checkpoint_fp8_serialized,
        kv_cache_quant_method,
        exclude_modules,
    )

get_min_capability classmethod

get_min_capability() -> int
Source code in vllm/model_executor/layers/quantization/modelopt.py
@classmethod
def get_min_capability(cls) -> int:
    return 89

get_name

get_name() -> QuantizationMethods
Source code in vllm/model_executor/layers/quantization/modelopt.py
def get_name(self) -> QuantizationMethods:
    return "modelopt"

get_supported_act_dtypes

get_supported_act_dtypes() -> list[dtype]
Source code in vllm/model_executor/layers/quantization/modelopt.py
def get_supported_act_dtypes(self) -> list[torch.dtype]:
    return [torch.bfloat16, torch.half]

override_quantization_method classmethod

override_quantization_method(
    hf_quant_cfg, user_quant
) -> QuantizationMethods | None

Detect if this ModelOpt config should be used based on quantization config.

Source code in vllm/model_executor/layers/quantization/modelopt.py
@classmethod
def override_quantization_method(
    cls, hf_quant_cfg, user_quant
) -> QuantizationMethods | None:
    """Detect if this ModelOpt config should be used based on
    quantization config."""

    if hf_quant_cfg is None:
        return None

    # Use the community standard 'quant_method'
    quant_method = hf_quant_cfg.get("quant_method", "").lower()

    # Only proceed if the method is explicitly "modelopt"
    if quant_method != "modelopt":
        return None

    # Look for ModelOpt-specific config structure
    if "quantization" in hf_quant_cfg:
        quant_config = hf_quant_cfg["quantization"]
        if isinstance(quant_config, dict):
            quant_algo = str(quant_config.get("quant_algo", ""))
            if "FP8" in quant_algo.upper():
                return "modelopt"
    else:
        # Check for compressed-tensors style config with specific quant_algo
        quant_algo = str(hf_quant_cfg.get("quant_algo", ""))
        if "FP8" in quant_algo.upper():
            return "modelopt"

    return None

ModelOptFp8KVCacheMethod

Bases: BaseKVCacheMethod

Supports loading kv-cache scaling factors from FP8 checkpoints.

Source code in vllm/model_executor/layers/quantization/modelopt.py
class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
    """
    Supports loading kv-cache scaling factors from FP8 checkpoints.
    """

    def __init__(self, quant_config: "ModelOptQuantConfigBase"):
        super().__init__(quant_config)

__init__

__init__(quant_config: ModelOptQuantConfigBase)
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(self, quant_config: "ModelOptQuantConfigBase"):
    super().__init__(quant_config)

ModelOptFp8LinearMethod

Bases: LinearMethodBase

Linear method for Model Optimizer static quantization. Supports loading FP8 checkpoints with static weight scale and activation scale. Future support might be added for dynamic scales.

Limitations: 1. Only support per-tensor quantization due to torch._scaled_mm support. 2. Only support float8_e4m3fn datatype Args: quant_config: The ModelOpt quantization config.

Source code in vllm/model_executor/layers/quantization/modelopt.py
class ModelOptFp8LinearMethod(LinearMethodBase):
    """Linear method for Model Optimizer static quantization.
    Supports loading FP8 checkpoints with static weight scale and
    activation scale. Future support might be added for dynamic
    scales.

    Limitations:
    1. Only support per-tensor quantization due to torch._scaled_mm support.
    2. Only support float8_e4m3fn datatype
        Args: quant_config: The ModelOpt quantization config.
    """

    def __init__(self, quant_config: ModelOptFp8Config) -> None:
        self.quant_config = quant_config
        self.fp8_linear = Fp8LinearOp(
            act_quant_static=True, act_quant_group_shape=GroupShape.PER_TENSOR
        )

    def create_weights(
        self,
        layer: torch.nn.Module,
        input_size_per_partition: int,
        output_partition_sizes: list[int],
        input_size: int,
        output_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        del input_size, output_size
        output_size_per_partition = sum(output_partition_sizes)
        weight_loader = extra_weight_attrs.get("weight_loader")
        layer.logical_widths = output_partition_sizes
        layer.input_size_per_partition = input_size_per_partition
        layer.output_size_per_partition = output_size_per_partition
        weight_dtype = (
            torch.float8_e4m3fn
            if self.quant_config.is_checkpoint_fp8_serialized
            else params_dtype
        )
        weight = ModelWeightParameter(
            data=torch.empty(
                output_size_per_partition, input_size_per_partition, dtype=weight_dtype
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )
        layer.register_parameter("weight", weight)

        if self.quant_config.is_checkpoint_fp8_serialized:
            # WEIGHT SCALE
            weight_scale = PerTensorScaleParameter(
                data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
                weight_loader=weight_loader,
            )
            weight_scale[:] = torch.finfo(torch.float32).min
            layer.register_parameter("weight_scale", weight_scale)
            # INPUT SCALE
            scale = PerTensorScaleParameter(
                data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
                weight_loader=weight_loader,
            )

            scale[:] = torch.finfo(torch.float32).min
            layer.register_parameter("input_scale", scale)

    def process_weights_after_loading(self, layer: Module) -> None:
        weight = layer.weight
        max_w_scale = layer.weight_scale.max()
        if not (layer.weight_scale == layer.weight_scale[0]).all():
            max_w_scale, weight = requantize_with_max_scale(
                layer.weight, layer.weight_scale, layer.logical_widths
            )
        layer.weight = Parameter(weight.t(), requires_grad=False)
        layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
        layer.input_scale = Parameter(layer.input_scale.max(), requires_grad=False)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: torch.Tensor | None = None,
    ) -> torch.Tensor:
        return self.fp8_linear.apply(
            input=x,
            weight=layer.weight,
            weight_scale=layer.weight_scale,
            input_scale=layer.input_scale,
            bias=bias,
        )

fp8_linear instance-attribute

fp8_linear = Fp8LinearOp(
    act_quant_static=True, act_quant_group_shape=PER_TENSOR
)

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(quant_config: ModelOptFp8Config) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(self, quant_config: ModelOptFp8Config) -> None:
    self.quant_config = quant_config
    self.fp8_linear = Fp8LinearOp(
        act_quant_static=True, act_quant_group_shape=GroupShape.PER_TENSOR
    )

apply

apply(
    layer: Module, x: Tensor, bias: Tensor | None = None
) -> Tensor
Source code in vllm/model_executor/layers/quantization/modelopt.py
def apply(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    bias: torch.Tensor | None = None,
) -> torch.Tensor:
    return self.fp8_linear.apply(
        input=x,
        weight=layer.weight,
        weight_scale=layer.weight_scale,
        input_scale=layer.input_scale,
        bias=bias,
    )

create_weights

create_weights(
    layer: Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/modelopt.py
def create_weights(
    self,
    layer: torch.nn.Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: torch.dtype,
    **extra_weight_attrs,
):
    del input_size, output_size
    output_size_per_partition = sum(output_partition_sizes)
    weight_loader = extra_weight_attrs.get("weight_loader")
    layer.logical_widths = output_partition_sizes
    layer.input_size_per_partition = input_size_per_partition
    layer.output_size_per_partition = output_size_per_partition
    weight_dtype = (
        torch.float8_e4m3fn
        if self.quant_config.is_checkpoint_fp8_serialized
        else params_dtype
    )
    weight = ModelWeightParameter(
        data=torch.empty(
            output_size_per_partition, input_size_per_partition, dtype=weight_dtype
        ),
        input_dim=1,
        output_dim=0,
        weight_loader=weight_loader,
    )
    layer.register_parameter("weight", weight)

    if self.quant_config.is_checkpoint_fp8_serialized:
        # WEIGHT SCALE
        weight_scale = PerTensorScaleParameter(
            data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
            weight_loader=weight_loader,
        )
        weight_scale[:] = torch.finfo(torch.float32).min
        layer.register_parameter("weight_scale", weight_scale)
        # INPUT SCALE
        scale = PerTensorScaleParameter(
            data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
            weight_loader=weight_loader,
        )

        scale[:] = torch.finfo(torch.float32).min
        layer.register_parameter("input_scale", scale)

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def process_weights_after_loading(self, layer: Module) -> None:
    weight = layer.weight
    max_w_scale = layer.weight_scale.max()
    if not (layer.weight_scale == layer.weight_scale[0]).all():
        max_w_scale, weight = requantize_with_max_scale(
            layer.weight, layer.weight_scale, layer.logical_widths
        )
    layer.weight = Parameter(weight.t(), requires_grad=False)
    layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
    layer.input_scale = Parameter(layer.input_scale.max(), requires_grad=False)

ModelOptFp8MoEMethod

Bases: FusedMoEMethodBase

MoE method for ModelOpt FP8. Supports loading FP8 checkpoints with static weight scale and activation scale. Args: quant_config: The ModelOpt quantization config.

Source code in vllm/model_executor/layers/quantization/modelopt.py
class ModelOptFp8MoEMethod(FusedMoEMethodBase):
    """MoE method for ModelOpt FP8.
    Supports loading FP8 checkpoints with static weight scale and
    activation scale.
    Args:
        quant_config: The ModelOpt quantization config.
    """

    def __init__(
        self,
        quant_config: ModelOptFp8Config,
        moe_config: FusedMoEConfig,
    ) -> None:
        super().__init__(moe_config)
        self.quant_config = quant_config
        assert self.quant_config.is_checkpoint_fp8_serialized
        self.fp8_backend = select_fp8_moe_backend(
            block_quant=False,
            tp_size=moe_config.moe_parallel_config.tp_size,
            with_lora_support=self.moe.is_lora_enabled,
        )
        self.kernel: mk.FusedMoEModularKernel | None = None

    def maybe_make_prepare_finalize(
        self,
        routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
    ) -> mk.FusedMoEPrepareAndFinalize | None:
        # TRT LLM not supported with all2all yet.
        if self.fp8_backend == Fp8MoeBackend.FLASHINFER_TRTLLM:
            return None
        elif self.fp8_backend == Fp8MoeBackend.FLASHINFER_CUTLASS:
            # TP case: avoid convert to ModularKernelMethod - to be refactored.
            if self.moe.dp_size == 1:
                return None

            prepare_finalize = build_flashinfer_fp8_cutlass_moe_prepare_finalize(
                self.moe,
                use_deepseek_fp8_block_scale=False,
            )
            logger.debug_once("%s", prepare_finalize.__class__.__name__)
            return prepare_finalize
        return super().maybe_make_prepare_finalize(routing_tables)

    def select_gemm_impl(
        self,
        prepare_finalize: mk.FusedMoEPrepareAndFinalize,
        layer: torch.nn.Module,
    ) -> mk.FusedMoEPermuteExpertsUnpermute:
        assert self.moe_quant_config is not None
        experts = select_cutlass_fp8_gemm_impl(
            self.moe,
            self.moe_quant_config,
        )
        logger.debug_once("Using %s", experts.__class__.__name__)
        return experts

    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size_per_partition: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        layer.orig_dtype = params_dtype
        layer.num_experts = num_experts

        # Use FP8 dtype if checkpoint is serialized
        weight_dtype = (
            torch.float8_e4m3fn
            if self.quant_config.is_checkpoint_fp8_serialized
            else params_dtype
        )
        weight_loader = extra_weight_attrs.get("weight_loader")

        if self.moe.is_act_and_mul:
            w13_up_dim = 2 * intermediate_size_per_partition
        else:
            w13_up_dim = intermediate_size_per_partition

        w13_weight = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                w13_up_dim,
                hidden_size,
                dtype=weight_dtype,
            ),
            input_dim=2,
            output_dim=1,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_weight", w13_weight)

        w2_weight = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                hidden_size,
                intermediate_size_per_partition,
                dtype=weight_dtype,
            ),
            input_dim=2,
            output_dim=1,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_weight", w2_weight)

        # WEIGHT SCALES - Per-tensor scaling for ModelOpts
        # For gated MoE, allocate 2 scales for w1 and w3 respectively.
        # They will be combined to a single scale after weight loading.
        # For non-gated MoE, allocate 1 scale for w13.
        w13_weight_scale = PerTensorScaleParameter(
            data=torch.full(
                (num_experts, 2 if self.moe.is_act_and_mul else 1),
                1.0,
                dtype=torch.float32,
            ),
            weight_loader=weight_loader,
        )
        w2_weight_scale = PerTensorScaleParameter(
            data=torch.full((num_experts,), 1.0, dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_weight_scale", w13_weight_scale)
        layer.register_parameter("w2_weight_scale", w2_weight_scale)

        # INPUT SCALES - Per-tensor scaling for ModelOpt
        w13_input_scale = PerTensorScaleParameter(
            data=torch.full((num_experts,), 1.0, dtype=torch.float32),
            weight_loader=weight_loader,
        )
        w2_input_scale = PerTensorScaleParameter(
            data=torch.full((num_experts,), 1.0, dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_input_scale", w13_input_scale)
        layer.register_parameter("w2_input_scale", w2_input_scale)

    def _setup_kernel(
        self,
        layer: torch.nn.Module,
        w13: torch.Tensor,
        w2: torch.Tensor,
        w13_scale: torch.Tensor,
        w2_scale: torch.Tensor,
        w13_input_scale: torch.Tensor,
        w2_input_scale: torch.Tensor,
    ):
        w13, w2, w13_scale, w2_scale = convert_to_fp8_moe_kernel_format(
            fp8_backend=self.fp8_backend,
            layer=layer,
            w13=w13,
            w2=w2,
            w13_scale=w13_scale,
            w2_scale=w2_scale,
            w13_input_scale=w13_input_scale,
            w2_input_scale=w2_input_scale,
        )

        # Replace parameters with updated versions. Note that this helper
        # function ensures the replacement is compatible with RL weight reloads.
        replace_parameter(layer, "w13_weight", w13)
        replace_parameter(layer, "w2_weight", w2)
        replace_parameter(layer, "w13_weight_scale", w13_scale)
        replace_parameter(layer, "w2_weight_scale", w2_scale)

        # Setup modular kernel for TP case.
        self.moe_quant_config = self.get_fused_moe_quant_config(layer)
        if self.moe_quant_config:
            self.kernel, self.use_inplace = make_fp8_moe_kernel(
                layer=layer,
                moe_quant_config=self.moe_quant_config,
                moe_config=self.moe,
                fp8_backend=self.fp8_backend,
            )

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        w13 = layer.w13_weight
        w2 = layer.w2_weight
        w13_scale = layer.w13_weight_scale
        w2_scale = layer.w2_weight_scale
        w13_input_scale = layer.w13_input_scale
        w2_input_scale = layer.w2_input_scale

        # Per tensor kernels require single activation scale. Use the max.
        w13_input_scale, w2_input_scale = process_fp8_input_tensor_strategy_moe(
            w13_input_scale, w2_input_scale
        )
        replace_parameter(layer, "w13_input_scale", w13_input_scale)
        replace_parameter(layer, "w2_input_scale", w2_input_scale)

        # Per tensor kernels require single weight scale for w13 per expert, but
        # on disk there is a scale for w1 and w3. Use the max to requantize.
        shard_size = layer.intermediate_size_per_partition
        w13, w13_scale = process_fp8_weight_tensor_strategy_moe(
            w13,
            w13_scale,
            shard_size,
            num_experts=layer.w13_weight.shape[0],
            is_act_and_mul=self.moe.is_act_and_mul,
        )

        # Shuffle weights to runtime format and setup kernel.
        self._setup_kernel(
            layer, w13, w2, w13_scale, w2_scale, w13_input_scale, w2_input_scale
        )

    def get_fused_moe_quant_config(
        self, layer: torch.nn.Module
    ) -> FusedMoEQuantConfig | None:
        w1_scale = layer.w13_weight_scale
        w2_scale = layer.w2_weight_scale
        a1_scale = layer.w13_input_scale
        a2_scale = layer.w2_input_scale

        return make_fp8_moe_quant_config(
            fp8_backend=self.fp8_backend,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
            a1_scale=a1_scale,
            a2_scale=a2_scale,
        )

    def apply(
        self,
        layer: FusedMoE,
        router: FusedMoERouter,
        x: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        if self.fp8_backend == Fp8MoeBackend.FLASHINFER_TRTLLM:
            if layer.enable_eplb:
                raise NotImplementedError(
                    "EPLB not supported for FlashInfer TRTLLM FP8 MoE Backend."
                )
            # TODO(rob): this validation should happen at kernel selection
            # time in the oracle rather than here.
            assert layer.activation == "silu", (
                f"Expected 'silu' activation but got {layer.activation}"
            )
            assert not layer.renormalize
            return apply_fi_trtllm_fp8_per_tensor_moe(
                layer=layer,
                hidden_states=x,
                router_logits=router_logits,
                routing_bias=layer.e_score_correction_bias,
                global_num_experts=layer.global_num_experts,
                top_k=layer.top_k,
                num_expert_group=layer.num_expert_group,
                topk_group=layer.topk_group,
                apply_router_weight_on_input=layer.apply_router_weight_on_input,
            )

        # Expert selection
        topk_weights, topk_ids = router.select_experts(
            hidden_states=x,
            router_logits=router_logits,
        )

        # TODO(rob): this validation should happen at kernel selection
        # time in the oracle rather than here.
        if self.fp8_backend == Fp8MoeBackend.FLASHINFER_CUTLASS:
            assert layer.activation in ("silu", "relu2_no_mul"), (
                "Expected activation to be in ('silu', 'relu2_no_mul'),"
                f"but got {layer.activation}"
            )

        assert self.kernel is not None
        result = self.kernel(
            x,
            layer.w13_weight,
            layer.w2_weight,
            topk_weights,
            topk_ids,
            inplace=self.use_inplace,
            activation=layer.activation,
            global_num_experts=layer.global_num_experts,
            expert_map=layer.expert_map,
            apply_router_weight_on_input=layer.apply_router_weight_on_input,
        )

        return result

fp8_backend instance-attribute

fp8_backend = select_fp8_moe_backend(
    block_quant=False,
    tp_size=tp_size,
    with_lora_support=is_lora_enabled,
)

kernel instance-attribute

kernel: FusedMoEModularKernel | None = None

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(
    quant_config: ModelOptFp8Config,
    moe_config: FusedMoEConfig,
) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(
    self,
    quant_config: ModelOptFp8Config,
    moe_config: FusedMoEConfig,
) -> None:
    super().__init__(moe_config)
    self.quant_config = quant_config
    assert self.quant_config.is_checkpoint_fp8_serialized
    self.fp8_backend = select_fp8_moe_backend(
        block_quant=False,
        tp_size=moe_config.moe_parallel_config.tp_size,
        with_lora_support=self.moe.is_lora_enabled,
    )
    self.kernel: mk.FusedMoEModularKernel | None = None

_setup_kernel

_setup_kernel(
    layer: Module,
    w13: Tensor,
    w2: Tensor,
    w13_scale: Tensor,
    w2_scale: Tensor,
    w13_input_scale: Tensor,
    w2_input_scale: Tensor,
)
Source code in vllm/model_executor/layers/quantization/modelopt.py
def _setup_kernel(
    self,
    layer: torch.nn.Module,
    w13: torch.Tensor,
    w2: torch.Tensor,
    w13_scale: torch.Tensor,
    w2_scale: torch.Tensor,
    w13_input_scale: torch.Tensor,
    w2_input_scale: torch.Tensor,
):
    w13, w2, w13_scale, w2_scale = convert_to_fp8_moe_kernel_format(
        fp8_backend=self.fp8_backend,
        layer=layer,
        w13=w13,
        w2=w2,
        w13_scale=w13_scale,
        w2_scale=w2_scale,
        w13_input_scale=w13_input_scale,
        w2_input_scale=w2_input_scale,
    )

    # Replace parameters with updated versions. Note that this helper
    # function ensures the replacement is compatible with RL weight reloads.
    replace_parameter(layer, "w13_weight", w13)
    replace_parameter(layer, "w2_weight", w2)
    replace_parameter(layer, "w13_weight_scale", w13_scale)
    replace_parameter(layer, "w2_weight_scale", w2_scale)

    # Setup modular kernel for TP case.
    self.moe_quant_config = self.get_fused_moe_quant_config(layer)
    if self.moe_quant_config:
        self.kernel, self.use_inplace = make_fp8_moe_kernel(
            layer=layer,
            moe_quant_config=self.moe_quant_config,
            moe_config=self.moe,
            fp8_backend=self.fp8_backend,
        )

apply

apply(
    layer: FusedMoE,
    router: FusedMoERouter,
    x: Tensor,
    router_logits: Tensor,
) -> Tensor | tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/quantization/modelopt.py
def apply(
    self,
    layer: FusedMoE,
    router: FusedMoERouter,
    x: torch.Tensor,
    router_logits: torch.Tensor,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
    if self.fp8_backend == Fp8MoeBackend.FLASHINFER_TRTLLM:
        if layer.enable_eplb:
            raise NotImplementedError(
                "EPLB not supported for FlashInfer TRTLLM FP8 MoE Backend."
            )
        # TODO(rob): this validation should happen at kernel selection
        # time in the oracle rather than here.
        assert layer.activation == "silu", (
            f"Expected 'silu' activation but got {layer.activation}"
        )
        assert not layer.renormalize
        return apply_fi_trtllm_fp8_per_tensor_moe(
            layer=layer,
            hidden_states=x,
            router_logits=router_logits,
            routing_bias=layer.e_score_correction_bias,
            global_num_experts=layer.global_num_experts,
            top_k=layer.top_k,
            num_expert_group=layer.num_expert_group,
            topk_group=layer.topk_group,
            apply_router_weight_on_input=layer.apply_router_weight_on_input,
        )

    # Expert selection
    topk_weights, topk_ids = router.select_experts(
        hidden_states=x,
        router_logits=router_logits,
    )

    # TODO(rob): this validation should happen at kernel selection
    # time in the oracle rather than here.
    if self.fp8_backend == Fp8MoeBackend.FLASHINFER_CUTLASS:
        assert layer.activation in ("silu", "relu2_no_mul"), (
            "Expected activation to be in ('silu', 'relu2_no_mul'),"
            f"but got {layer.activation}"
        )

    assert self.kernel is not None
    result = self.kernel(
        x,
        layer.w13_weight,
        layer.w2_weight,
        topk_weights,
        topk_ids,
        inplace=self.use_inplace,
        activation=layer.activation,
        global_num_experts=layer.global_num_experts,
        expert_map=layer.expert_map,
        apply_router_weight_on_input=layer.apply_router_weight_on_input,
    )

    return result

create_weights

create_weights(
    layer: Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/modelopt.py
def create_weights(
    self,
    layer: torch.nn.Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: torch.dtype,
    **extra_weight_attrs,
):
    layer.orig_dtype = params_dtype
    layer.num_experts = num_experts

    # Use FP8 dtype if checkpoint is serialized
    weight_dtype = (
        torch.float8_e4m3fn
        if self.quant_config.is_checkpoint_fp8_serialized
        else params_dtype
    )
    weight_loader = extra_weight_attrs.get("weight_loader")

    if self.moe.is_act_and_mul:
        w13_up_dim = 2 * intermediate_size_per_partition
    else:
        w13_up_dim = intermediate_size_per_partition

    w13_weight = ModelWeightParameter(
        data=torch.empty(
            num_experts,
            w13_up_dim,
            hidden_size,
            dtype=weight_dtype,
        ),
        input_dim=2,
        output_dim=1,
        weight_loader=weight_loader,
    )
    layer.register_parameter("w13_weight", w13_weight)

    w2_weight = ModelWeightParameter(
        data=torch.empty(
            num_experts,
            hidden_size,
            intermediate_size_per_partition,
            dtype=weight_dtype,
        ),
        input_dim=2,
        output_dim=1,
        weight_loader=weight_loader,
    )
    layer.register_parameter("w2_weight", w2_weight)

    # WEIGHT SCALES - Per-tensor scaling for ModelOpts
    # For gated MoE, allocate 2 scales for w1 and w3 respectively.
    # They will be combined to a single scale after weight loading.
    # For non-gated MoE, allocate 1 scale for w13.
    w13_weight_scale = PerTensorScaleParameter(
        data=torch.full(
            (num_experts, 2 if self.moe.is_act_and_mul else 1),
            1.0,
            dtype=torch.float32,
        ),
        weight_loader=weight_loader,
    )
    w2_weight_scale = PerTensorScaleParameter(
        data=torch.full((num_experts,), 1.0, dtype=torch.float32),
        weight_loader=weight_loader,
    )
    layer.register_parameter("w13_weight_scale", w13_weight_scale)
    layer.register_parameter("w2_weight_scale", w2_weight_scale)

    # INPUT SCALES - Per-tensor scaling for ModelOpt
    w13_input_scale = PerTensorScaleParameter(
        data=torch.full((num_experts,), 1.0, dtype=torch.float32),
        weight_loader=weight_loader,
    )
    w2_input_scale = PerTensorScaleParameter(
        data=torch.full((num_experts,), 1.0, dtype=torch.float32),
        weight_loader=weight_loader,
    )
    layer.register_parameter("w13_input_scale", w13_input_scale)
    layer.register_parameter("w2_input_scale", w2_input_scale)

get_fused_moe_quant_config

get_fused_moe_quant_config(
    layer: Module,
) -> FusedMoEQuantConfig | None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def get_fused_moe_quant_config(
    self, layer: torch.nn.Module
) -> FusedMoEQuantConfig | None:
    w1_scale = layer.w13_weight_scale
    w2_scale = layer.w2_weight_scale
    a1_scale = layer.w13_input_scale
    a2_scale = layer.w2_input_scale

    return make_fp8_moe_quant_config(
        fp8_backend=self.fp8_backend,
        w1_scale=w1_scale,
        w2_scale=w2_scale,
        a1_scale=a1_scale,
        a2_scale=a2_scale,
    )

maybe_make_prepare_finalize

maybe_make_prepare_finalize(
    routing_tables: tuple[Tensor, Tensor, Tensor]
    | None = None,
) -> FusedMoEPrepareAndFinalize | None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def maybe_make_prepare_finalize(
    self,
    routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
) -> mk.FusedMoEPrepareAndFinalize | None:
    # TRT LLM not supported with all2all yet.
    if self.fp8_backend == Fp8MoeBackend.FLASHINFER_TRTLLM:
        return None
    elif self.fp8_backend == Fp8MoeBackend.FLASHINFER_CUTLASS:
        # TP case: avoid convert to ModularKernelMethod - to be refactored.
        if self.moe.dp_size == 1:
            return None

        prepare_finalize = build_flashinfer_fp8_cutlass_moe_prepare_finalize(
            self.moe,
            use_deepseek_fp8_block_scale=False,
        )
        logger.debug_once("%s", prepare_finalize.__class__.__name__)
        return prepare_finalize
    return super().maybe_make_prepare_finalize(routing_tables)

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
    w13 = layer.w13_weight
    w2 = layer.w2_weight
    w13_scale = layer.w13_weight_scale
    w2_scale = layer.w2_weight_scale
    w13_input_scale = layer.w13_input_scale
    w2_input_scale = layer.w2_input_scale

    # Per tensor kernels require single activation scale. Use the max.
    w13_input_scale, w2_input_scale = process_fp8_input_tensor_strategy_moe(
        w13_input_scale, w2_input_scale
    )
    replace_parameter(layer, "w13_input_scale", w13_input_scale)
    replace_parameter(layer, "w2_input_scale", w2_input_scale)

    # Per tensor kernels require single weight scale for w13 per expert, but
    # on disk there is a scale for w1 and w3. Use the max to requantize.
    shard_size = layer.intermediate_size_per_partition
    w13, w13_scale = process_fp8_weight_tensor_strategy_moe(
        w13,
        w13_scale,
        shard_size,
        num_experts=layer.w13_weight.shape[0],
        is_act_and_mul=self.moe.is_act_and_mul,
    )

    # Shuffle weights to runtime format and setup kernel.
    self._setup_kernel(
        layer, w13, w2, w13_scale, w2_scale, w13_input_scale, w2_input_scale
    )

select_gemm_impl

select_gemm_impl(
    prepare_finalize: FusedMoEPrepareAndFinalize,
    layer: Module,
) -> FusedMoEPermuteExpertsUnpermute
Source code in vllm/model_executor/layers/quantization/modelopt.py
def select_gemm_impl(
    self,
    prepare_finalize: mk.FusedMoEPrepareAndFinalize,
    layer: torch.nn.Module,
) -> mk.FusedMoEPermuteExpertsUnpermute:
    assert self.moe_quant_config is not None
    experts = select_cutlass_fp8_gemm_impl(
        self.moe,
        self.moe_quant_config,
    )
    logger.debug_once("Using %s", experts.__class__.__name__)
    return experts

ModelOptFp8PbWoLinearMethod

Bases: LinearMethodBase

Linear method for ModelOpt FP8_PB_WO checkpoints.

ModelOpt exports weight_scale as a 4D tensor: [out_blk, 1, in_blk, 1] where block size is typically 128 for both dims.

vLLM executes it as FP8 GEMM with dynamic per-token activation quant.

Source code in vllm/model_executor/layers/quantization/modelopt.py
class ModelOptFp8PbWoLinearMethod(LinearMethodBase):
    """Linear method for ModelOpt FP8_PB_WO checkpoints.

    ModelOpt exports `weight_scale` as a 4D tensor:
      [out_blk, 1, in_blk, 1]
    where block size is typically 128 for both dims.

    vLLM executes it as FP8 GEMM with *dynamic per-token* activation quant.
    """

    _WEIGHT_BLOCK_SIZE: tuple[int, int] = (128, 128)

    def __init__(self, quant_config: ModelOptFp8Config) -> None:
        self.quant_config = quant_config
        block_n, block_k = self._WEIGHT_BLOCK_SIZE
        self.weight_block_size = list(self._WEIGHT_BLOCK_SIZE)
        self.w8a8_block_fp8_linear = W8A8BlockFp8LinearOp(
            weight_group_shape=GroupShape(block_n, block_k),
            act_quant_group_shape=GroupShape(1, block_k),
            cutlass_block_fp8_supported=cutlass_block_fp8_supported(),
            use_aiter_and_is_supported=False,
        )

    def create_weights(
        self,
        layer: torch.nn.Module,
        input_size_per_partition: int,
        output_partition_sizes: list[int],
        input_size: int,
        output_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        del input_size, output_size

        if not self.quant_config.is_checkpoint_fp8_serialized:
            raise ValueError(
                "FP8_PB_WO currently only supports FP8-serialized checkpoints."
            )

        output_size_per_partition = sum(output_partition_sizes)
        weight_loader = extra_weight_attrs.get("weight_loader")
        layer.logical_widths = output_partition_sizes
        layer.input_size_per_partition = input_size_per_partition
        layer.output_size_per_partition = output_size_per_partition

        # Expose block size so the v2 weight loaders can translate offsets from
        # element-space -> block-space for BlockQuantScaleParameter.
        layer.weight_block_size = self.weight_block_size

        weight = ModelWeightParameter(
            data=torch.empty(
                output_size_per_partition,
                input_size_per_partition,
                dtype=torch.float8_e4m3fn,
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )
        layer.register_parameter("weight", weight)

        block_n, block_k = self._WEIGHT_BLOCK_SIZE
        if output_size_per_partition % block_n != 0:
            raise ValueError(
                "ModelOpt FP8_PB_WO requires out_features divisible by "
                f"{block_n}, got {output_size_per_partition}."
            )
        if input_size_per_partition % block_k != 0:
            raise ValueError(
                "ModelOpt FP8_PB_WO requires in_features divisible by "
                f"{block_k}, got {input_size_per_partition}."
            )

        out_blks = output_size_per_partition // block_n
        in_blks = input_size_per_partition // block_k

        # Match ModelOpt's exported shape so weight loading works without a
        # custom loader: [out_blk, 1, in_blk, 1]
        weight_scale = BlockQuantScaleParameter(
            data=torch.empty((out_blks, 1, in_blks, 1), dtype=torch.float32),
            input_dim=2,
            output_dim=0,
            weight_loader=weight_loader,
        )
        weight_scale[:] = torch.finfo(torch.float32).min
        layer.register_parameter("weight_scale", weight_scale)

    def process_weights_after_loading(self, layer: Module) -> None:
        # Keep weight in [out, in] layout for W8A8BlockFp8LinearOp.
        layer.weight = Parameter(layer.weight.data, requires_grad=False)

        scale = layer.weight_scale
        if scale.dim() == 4:
            # [out_blk, 1, in_blk, 1] -> [out_blk, in_blk]
            scale = scale.squeeze(1).squeeze(-1)
        elif scale.dim() != 2:
            raise ValueError(
                "Unexpected ModelOpt FP8_PB_WO weight_scale shape: "
                f"{tuple(scale.shape)}."
            )

        layer.weight_scale = Parameter(scale.contiguous(), requires_grad=False)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: torch.Tensor | None = None,
    ) -> torch.Tensor:
        return self.w8a8_block_fp8_linear.apply(
            input=x,
            weight=layer.weight,
            weight_scale=layer.weight_scale,
            input_scale=None,
            bias=bias,
        )

_WEIGHT_BLOCK_SIZE class-attribute instance-attribute

_WEIGHT_BLOCK_SIZE: tuple[int, int] = (128, 128)

quant_config instance-attribute

quant_config = quant_config

w8a8_block_fp8_linear instance-attribute

w8a8_block_fp8_linear = W8A8BlockFp8LinearOp(
    weight_group_shape=GroupShape(block_n, block_k),
    act_quant_group_shape=GroupShape(1, block_k),
    cutlass_block_fp8_supported=cutlass_block_fp8_supported(),
    use_aiter_and_is_supported=False,
)

weight_block_size instance-attribute

weight_block_size = list(_WEIGHT_BLOCK_SIZE)

__init__

__init__(quant_config: ModelOptFp8Config) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(self, quant_config: ModelOptFp8Config) -> None:
    self.quant_config = quant_config
    block_n, block_k = self._WEIGHT_BLOCK_SIZE
    self.weight_block_size = list(self._WEIGHT_BLOCK_SIZE)
    self.w8a8_block_fp8_linear = W8A8BlockFp8LinearOp(
        weight_group_shape=GroupShape(block_n, block_k),
        act_quant_group_shape=GroupShape(1, block_k),
        cutlass_block_fp8_supported=cutlass_block_fp8_supported(),
        use_aiter_and_is_supported=False,
    )

apply

apply(
    layer: Module, x: Tensor, bias: Tensor | None = None
) -> Tensor
Source code in vllm/model_executor/layers/quantization/modelopt.py
def apply(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    bias: torch.Tensor | None = None,
) -> torch.Tensor:
    return self.w8a8_block_fp8_linear.apply(
        input=x,
        weight=layer.weight,
        weight_scale=layer.weight_scale,
        input_scale=None,
        bias=bias,
    )

create_weights

create_weights(
    layer: Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/modelopt.py
def create_weights(
    self,
    layer: torch.nn.Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: torch.dtype,
    **extra_weight_attrs,
):
    del input_size, output_size

    if not self.quant_config.is_checkpoint_fp8_serialized:
        raise ValueError(
            "FP8_PB_WO currently only supports FP8-serialized checkpoints."
        )

    output_size_per_partition = sum(output_partition_sizes)
    weight_loader = extra_weight_attrs.get("weight_loader")
    layer.logical_widths = output_partition_sizes
    layer.input_size_per_partition = input_size_per_partition
    layer.output_size_per_partition = output_size_per_partition

    # Expose block size so the v2 weight loaders can translate offsets from
    # element-space -> block-space for BlockQuantScaleParameter.
    layer.weight_block_size = self.weight_block_size

    weight = ModelWeightParameter(
        data=torch.empty(
            output_size_per_partition,
            input_size_per_partition,
            dtype=torch.float8_e4m3fn,
        ),
        input_dim=1,
        output_dim=0,
        weight_loader=weight_loader,
    )
    layer.register_parameter("weight", weight)

    block_n, block_k = self._WEIGHT_BLOCK_SIZE
    if output_size_per_partition % block_n != 0:
        raise ValueError(
            "ModelOpt FP8_PB_WO requires out_features divisible by "
            f"{block_n}, got {output_size_per_partition}."
        )
    if input_size_per_partition % block_k != 0:
        raise ValueError(
            "ModelOpt FP8_PB_WO requires in_features divisible by "
            f"{block_k}, got {input_size_per_partition}."
        )

    out_blks = output_size_per_partition // block_n
    in_blks = input_size_per_partition // block_k

    # Match ModelOpt's exported shape so weight loading works without a
    # custom loader: [out_blk, 1, in_blk, 1]
    weight_scale = BlockQuantScaleParameter(
        data=torch.empty((out_blks, 1, in_blks, 1), dtype=torch.float32),
        input_dim=2,
        output_dim=0,
        weight_loader=weight_loader,
    )
    weight_scale[:] = torch.finfo(torch.float32).min
    layer.register_parameter("weight_scale", weight_scale)

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def process_weights_after_loading(self, layer: Module) -> None:
    # Keep weight in [out, in] layout for W8A8BlockFp8LinearOp.
    layer.weight = Parameter(layer.weight.data, requires_grad=False)

    scale = layer.weight_scale
    if scale.dim() == 4:
        # [out_blk, 1, in_blk, 1] -> [out_blk, in_blk]
        scale = scale.squeeze(1).squeeze(-1)
    elif scale.dim() != 2:
        raise ValueError(
            "Unexpected ModelOpt FP8_PB_WO weight_scale shape: "
            f"{tuple(scale.shape)}."
        )

    layer.weight_scale = Parameter(scale.contiguous(), requires_grad=False)

ModelOptFp8PcPtLinearMethod

Bases: LinearMethodBase

Linear method for ModelOpt FP8_PER_CHANNEL_PER_TOKEN checkpoints.

Expected checkpoint structure (per Linear): - weight: fp8-e4m3fn, shape [out, in] - weight_scale: fp32, shape [out] (per-output-channel) - no input_scale (activations are dynamically quantized per-token)

Source code in vllm/model_executor/layers/quantization/modelopt.py
class ModelOptFp8PcPtLinearMethod(LinearMethodBase):
    """Linear method for ModelOpt FP8_PER_CHANNEL_PER_TOKEN checkpoints.

    Expected checkpoint structure (per Linear):
    - weight: fp8-e4m3fn, shape [out, in]
    - weight_scale: fp32, shape [out] (per-output-channel)
    - no input_scale (activations are dynamically quantized per-token)
    """

    def __init__(self, quant_config: ModelOptFp8Config) -> None:
        self.quant_config = quant_config
        self.fp8_linear = Fp8LinearOp(
            act_quant_static=False, act_quant_group_shape=GroupShape.PER_TOKEN
        )

    def create_weights(
        self,
        layer: torch.nn.Module,
        input_size_per_partition: int,
        output_partition_sizes: list[int],
        input_size: int,
        output_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        del input_size, output_size

        if not self.quant_config.is_checkpoint_fp8_serialized:
            raise ValueError(
                "FP8_PER_CHANNEL_PER_TOKEN currently only supports "
                "FP8-serialized checkpoints."
            )

        output_size_per_partition = sum(output_partition_sizes)
        weight_loader = extra_weight_attrs.get("weight_loader")
        layer.logical_widths = output_partition_sizes
        layer.input_size_per_partition = input_size_per_partition
        layer.output_size_per_partition = output_size_per_partition

        weight = ModelWeightParameter(
            data=torch.empty(
                output_size_per_partition,
                input_size_per_partition,
                dtype=torch.float8_e4m3fn,
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )
        layer.register_parameter("weight", weight)

        weight_scale = ChannelQuantScaleParameter(
            data=torch.empty(output_size_per_partition, dtype=torch.float32),
            output_dim=0,
            weight_loader=weight_loader,
        )
        weight_scale[:] = torch.finfo(torch.float32).min
        layer.register_parameter("weight_scale", weight_scale)

    def process_weights_after_loading(self, layer: Module) -> None:
        layer.weight = Parameter(layer.weight.t(), requires_grad=False)
        layer.weight_scale = Parameter(layer.weight_scale.data, requires_grad=False)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: torch.Tensor | None = None,
    ) -> torch.Tensor:
        return self.fp8_linear.apply(
            input=x,
            weight=layer.weight,
            weight_scale=layer.weight_scale,
            input_scale=None,
            bias=bias,
        )

fp8_linear instance-attribute

fp8_linear = Fp8LinearOp(
    act_quant_static=False, act_quant_group_shape=PER_TOKEN
)

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(quant_config: ModelOptFp8Config) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(self, quant_config: ModelOptFp8Config) -> None:
    self.quant_config = quant_config
    self.fp8_linear = Fp8LinearOp(
        act_quant_static=False, act_quant_group_shape=GroupShape.PER_TOKEN
    )

apply

apply(
    layer: Module, x: Tensor, bias: Tensor | None = None
) -> Tensor
Source code in vllm/model_executor/layers/quantization/modelopt.py
def apply(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    bias: torch.Tensor | None = None,
) -> torch.Tensor:
    return self.fp8_linear.apply(
        input=x,
        weight=layer.weight,
        weight_scale=layer.weight_scale,
        input_scale=None,
        bias=bias,
    )

create_weights

create_weights(
    layer: Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/modelopt.py
def create_weights(
    self,
    layer: torch.nn.Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: torch.dtype,
    **extra_weight_attrs,
):
    del input_size, output_size

    if not self.quant_config.is_checkpoint_fp8_serialized:
        raise ValueError(
            "FP8_PER_CHANNEL_PER_TOKEN currently only supports "
            "FP8-serialized checkpoints."
        )

    output_size_per_partition = sum(output_partition_sizes)
    weight_loader = extra_weight_attrs.get("weight_loader")
    layer.logical_widths = output_partition_sizes
    layer.input_size_per_partition = input_size_per_partition
    layer.output_size_per_partition = output_size_per_partition

    weight = ModelWeightParameter(
        data=torch.empty(
            output_size_per_partition,
            input_size_per_partition,
            dtype=torch.float8_e4m3fn,
        ),
        input_dim=1,
        output_dim=0,
        weight_loader=weight_loader,
    )
    layer.register_parameter("weight", weight)

    weight_scale = ChannelQuantScaleParameter(
        data=torch.empty(output_size_per_partition, dtype=torch.float32),
        output_dim=0,
        weight_loader=weight_loader,
    )
    weight_scale[:] = torch.finfo(torch.float32).min
    layer.register_parameter("weight_scale", weight_scale)

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def process_weights_after_loading(self, layer: Module) -> None:
    layer.weight = Parameter(layer.weight.t(), requires_grad=False)
    layer.weight_scale = Parameter(layer.weight_scale.data, requires_grad=False)

ModelOptNvFp4Config

Bases: ModelOptQuantConfigBase

Config class for ModelOpt FP4.

Source code in vllm/model_executor/layers/quantization/modelopt.py
class ModelOptNvFp4Config(ModelOptQuantConfigBase):
    """Config class for ModelOpt FP4."""

    def __init__(
        self,
        is_checkpoint_nvfp4_serialized: bool,
        kv_cache_quant_algo: str | None,
        exclude_modules: list[str],
        group_size: int = 16,
    ) -> None:
        super().__init__(exclude_modules)
        self.is_checkpoint_nvfp4_serialized = is_checkpoint_nvfp4_serialized
        if is_checkpoint_nvfp4_serialized:
            logger.warning(
                "Detected ModelOpt NVFP4 checkpoint. Please note that"
                " the format is experimental and could change in future."
            )

            self.group_size = group_size
            self.kv_cache_quant_algo = kv_cache_quant_algo

    def get_name(self) -> QuantizationMethods:
        return "modelopt_fp4"

    def get_supported_act_dtypes(self) -> list[torch.dtype]:
        return [torch.bfloat16, torch.half, torch.float8_e4m3fn]

    @classmethod
    def get_min_capability(cls) -> int:
        return 75

    @classmethod
    def override_quantization_method(
        cls, hf_quant_cfg, user_quant
    ) -> QuantizationMethods | None:
        """Detect if this ModelOpt FP4 config should be used based on
        quantization config."""
        if hf_quant_cfg is None:
            return None

        # Use the community standard 'quant_method'
        quant_method = hf_quant_cfg.get("quant_method", "").lower()

        # Only proceed if the method is explicitly "modelopt"
        if quant_method != "modelopt":
            return None

        # Look for ModelOpt-specific config structure
        if "quantization" in hf_quant_cfg:
            quant_config = hf_quant_cfg["quantization"]
            if isinstance(quant_config, dict):
                quant_algo = quant_config.get("quant_algo", "")
                if "NVFP4" in quant_algo:
                    return "modelopt_fp4"
        else:
            # Check for compressed-tensors style config with specific
            # quant_algo field
            quant_algo = hf_quant_cfg.get("quant_algo", "")
            if isinstance(quant_algo, str) and "FP4" in quant_algo.upper():
                return "modelopt_fp4"

        return None

    @classmethod
    def _from_config(
        cls,
        *,
        quant_method: str,
        kv_cache_quant_method: str | None,
        exclude_modules: list[str],
        original_config: dict[str, Any],
        group_size: int | None,
        **kwargs: Any,
    ) -> "ModelOptNvFp4Config":
        is_checkpoint_nvfp4_serialized = "NVFP4" in quant_method

        if group_size is None:
            group_size = 16  # Default value

        # For FP4, these fields are required
        if is_checkpoint_nvfp4_serialized and "quantization" in original_config:
            # Check if required fields are present in the quantization config
            quant_config = original_config["quantization"]
            required_fields = ["group_size", "kv_cache_quant_algo", "exclude_modules"]
            missing_fields = [
                field for field in required_fields if field not in quant_config
            ]
            if missing_fields:
                raise ValueError(
                    f"NVFP4 quantization requires the following fields in "
                    f"hf_quant_config.json: {missing_fields}"
                )

        return cls(
            is_checkpoint_nvfp4_serialized,
            kv_cache_quant_method,
            exclude_modules,
            group_size,
        )

group_size instance-attribute

group_size = group_size

is_checkpoint_nvfp4_serialized instance-attribute

is_checkpoint_nvfp4_serialized = (
    is_checkpoint_nvfp4_serialized
)

kv_cache_quant_algo instance-attribute

kv_cache_quant_algo = kv_cache_quant_algo

__init__

__init__(
    is_checkpoint_nvfp4_serialized: bool,
    kv_cache_quant_algo: str | None,
    exclude_modules: list[str],
    group_size: int = 16,
) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(
    self,
    is_checkpoint_nvfp4_serialized: bool,
    kv_cache_quant_algo: str | None,
    exclude_modules: list[str],
    group_size: int = 16,
) -> None:
    super().__init__(exclude_modules)
    self.is_checkpoint_nvfp4_serialized = is_checkpoint_nvfp4_serialized
    if is_checkpoint_nvfp4_serialized:
        logger.warning(
            "Detected ModelOpt NVFP4 checkpoint. Please note that"
            " the format is experimental and could change in future."
        )

        self.group_size = group_size
        self.kv_cache_quant_algo = kv_cache_quant_algo

_from_config classmethod

_from_config(
    *,
    quant_method: str,
    kv_cache_quant_method: str | None,
    exclude_modules: list[str],
    original_config: dict[str, Any],
    group_size: int | None,
    **kwargs: Any,
) -> ModelOptNvFp4Config
Source code in vllm/model_executor/layers/quantization/modelopt.py
@classmethod
def _from_config(
    cls,
    *,
    quant_method: str,
    kv_cache_quant_method: str | None,
    exclude_modules: list[str],
    original_config: dict[str, Any],
    group_size: int | None,
    **kwargs: Any,
) -> "ModelOptNvFp4Config":
    is_checkpoint_nvfp4_serialized = "NVFP4" in quant_method

    if group_size is None:
        group_size = 16  # Default value

    # For FP4, these fields are required
    if is_checkpoint_nvfp4_serialized and "quantization" in original_config:
        # Check if required fields are present in the quantization config
        quant_config = original_config["quantization"]
        required_fields = ["group_size", "kv_cache_quant_algo", "exclude_modules"]
        missing_fields = [
            field for field in required_fields if field not in quant_config
        ]
        if missing_fields:
            raise ValueError(
                f"NVFP4 quantization requires the following fields in "
                f"hf_quant_config.json: {missing_fields}"
            )

    return cls(
        is_checkpoint_nvfp4_serialized,
        kv_cache_quant_method,
        exclude_modules,
        group_size,
    )

get_min_capability classmethod

get_min_capability() -> int
Source code in vllm/model_executor/layers/quantization/modelopt.py
@classmethod
def get_min_capability(cls) -> int:
    return 75

get_name

get_name() -> QuantizationMethods
Source code in vllm/model_executor/layers/quantization/modelopt.py
def get_name(self) -> QuantizationMethods:
    return "modelopt_fp4"

get_supported_act_dtypes

get_supported_act_dtypes() -> list[dtype]
Source code in vllm/model_executor/layers/quantization/modelopt.py
def get_supported_act_dtypes(self) -> list[torch.dtype]:
    return [torch.bfloat16, torch.half, torch.float8_e4m3fn]

override_quantization_method classmethod

override_quantization_method(
    hf_quant_cfg, user_quant
) -> QuantizationMethods | None

Detect if this ModelOpt FP4 config should be used based on quantization config.

Source code in vllm/model_executor/layers/quantization/modelopt.py
@classmethod
def override_quantization_method(
    cls, hf_quant_cfg, user_quant
) -> QuantizationMethods | None:
    """Detect if this ModelOpt FP4 config should be used based on
    quantization config."""
    if hf_quant_cfg is None:
        return None

    # Use the community standard 'quant_method'
    quant_method = hf_quant_cfg.get("quant_method", "").lower()

    # Only proceed if the method is explicitly "modelopt"
    if quant_method != "modelopt":
        return None

    # Look for ModelOpt-specific config structure
    if "quantization" in hf_quant_cfg:
        quant_config = hf_quant_cfg["quantization"]
        if isinstance(quant_config, dict):
            quant_algo = quant_config.get("quant_algo", "")
            if "NVFP4" in quant_algo:
                return "modelopt_fp4"
    else:
        # Check for compressed-tensors style config with specific
        # quant_algo field
        quant_algo = hf_quant_cfg.get("quant_algo", "")
        if isinstance(quant_algo, str) and "FP4" in quant_algo.upper():
            return "modelopt_fp4"

    return None

ModelOptNvFp4FusedMoE

Bases: FusedMoEMethodBase

MoE Method for FP4 Quantization. Args: quant_config: NVFP4 Quant Config

Source code in vllm/model_executor/layers/quantization/modelopt.py
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
class ModelOptNvFp4FusedMoE(FusedMoEMethodBase):
    """
    MoE Method for FP4 Quantization.
    Args:
        quant_config: NVFP4 Quant Config
    """

    def __init__(
        self,
        quant_config: ModelOptNvFp4Config,
        moe_config: FusedMoEConfig,
    ) -> None:
        super().__init__(moe_config)
        self.quant_config = quant_config
        self.nvfp4_backend = select_nvfp4_moe_backend()
        # TODO: move this type of check into the oracle.
        if (
            not self.moe.is_act_and_mul
            and not self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_CUTLASS
        ):
            raise NotImplementedError(
                "Non-gated activations are only supported by FlashInfer "
                "CUTLASS NvFP4 MoE backend."
            )

        self.use_global_sf = is_global_sf_supported_for_nvfp4_backend(
            self.nvfp4_backend
        )
        self.kernel: mk.FusedMoEModularKernel | None = None

    def maybe_make_prepare_finalize(
        self,
        routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
    ) -> mk.FusedMoEPrepareAndFinalize | None:
        UNSUPPORTED = [NvFp4MoeBackend.MARLIN, NvFp4MoeBackend.FLASHINFER_TRTLLM]
        if self.nvfp4_backend in UNSUPPORTED:
            return None
        elif self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_CUTLASS:
            # TP case: avoid convert to ModularKernelMethod - to be refactored.
            if self.moe.dp_size == 1:
                return None
            # For now, fp4 moe only works with the flashinfer dispatcher.
            prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(
                self.moe
            )
            logger.debug_once("%s", prepare_finalize.__class__.__name__)
            return prepare_finalize
        else:
            return super().maybe_make_prepare_finalize(routing_tables)

    def select_gemm_impl(
        self,
        prepare_finalize: mk.FusedMoEPrepareAndFinalize,
        layer: torch.nn.Module,
    ) -> mk.FusedMoEPermuteExpertsUnpermute:
        assert self.moe_quant_config is not None
        experts = select_nvfp4_gemm_impl(
            self.moe,
            self.moe_quant_config,
            allow_flashinfer=self.nvfp4_backend in FLASHINFER_NVFP4_MOE_BACKENDS,
        )
        logger.debug_once("Using %s", experts.__class__.__name__)
        return experts

    def uses_weight_scale_2_pattern(self) -> bool:
        """
        FP4 variants use 'weight_scale_2' pattern for per-tensor weight scales.
        """
        return True

    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size_per_partition: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        assert self.quant_config.is_checkpoint_nvfp4_serialized

        layer.num_experts = num_experts
        layer.params_dtype = params_dtype
        layer.quant_config = self.quant_config
        weight_dtype = torch.uint8
        weight_scale_dtype = torch.float8_e4m3fn
        weight_loader = extra_weight_attrs.get("weight_loader")
        global_num_experts = extra_weight_attrs.get("global_num_experts")
        # GEMM 1
        w13_weight = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                (2 if self.moe.is_act_and_mul else 1) * intermediate_size_per_partition,
                # 2 fp4 items are packed in the input dimension
                hidden_size // 2,
                dtype=weight_dtype,
            ),
            input_dim=1,
            output_dim=2,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_weight", w13_weight)

        # GEMM 2
        w2_weight = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                hidden_size,
                # 2 fp4 items are packed in the input dimension
                intermediate_size_per_partition // 2,
                dtype=weight_dtype,
            ),
            input_dim=1,
            output_dim=2,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_weight", w2_weight)

        w13_weight_scale = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                (2 if self.moe.is_act_and_mul else 1) * intermediate_size_per_partition,
                # 2 fp4 items are packed in the input dimension
                hidden_size // self.quant_config.group_size,
                dtype=weight_scale_dtype,
            ),
            input_dim=1,
            output_dim=2,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_weight_scale", w13_weight_scale)

        w2_weight_scale = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                hidden_size,
                # 2 fp4 items are packed in the input dimension
                intermediate_size_per_partition // self.quant_config.group_size,
                dtype=weight_scale_dtype,
            ),
            input_dim=1,
            output_dim=2,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_weight_scale", w2_weight_scale)

        extra_weight_attrs.update(
            {"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
        )

        w13_weight_scale_2 = PerTensorScaleParameter(
            data=torch.empty(
                num_experts, 2 if self.moe.is_act_and_mul else 1, dtype=torch.float32
            ),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_weight_scale_2", w13_weight_scale_2)

        w2_weight_scale_2 = PerTensorScaleParameter(
            data=torch.empty(num_experts, dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_weight_scale_2", w2_weight_scale_2)

        extra_weight_attrs.update(
            {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
        )

        global_sf_num_experts = (
            global_num_experts if self.use_global_sf else num_experts
        )
        w13_input_scale = PerTensorScaleParameter(
            data=torch.empty(
                global_sf_num_experts,
                2 if self.moe.is_act_and_mul else 1,
                dtype=torch.float32,
            ),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_input_scale", w13_input_scale)

        w2_input_scale = PerTensorScaleParameter(
            data=torch.empty(global_sf_num_experts, dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_input_scale", w2_input_scale)

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        """
        Convert NVFP4 MoE weights into kernel format and setup the kernel.
        """

        # Use a single gscale for w13.
        if self.moe.is_act_and_mul and not torch.allclose(
            layer.w13_weight_scale_2[:, 0], layer.w13_weight_scale_2[:, 1]
        ):
            logger.warning_once(
                "w1_weight_scale_2 must match w3_weight_scale_2. "
                "Accuracy may be affected."
            )
        w13_weight_scale_2 = layer.w13_weight_scale_2[:, 0].contiguous()

        (
            w13,
            w13_scale,
            w13_scale_2,
            a13_scale,
            w2,
            w2_scale,
            w2_scale_2,
            a2_scale,
        ) = convert_to_nvfp4_moe_kernel_format(
            nvfp4_backend=self.nvfp4_backend,
            layer=layer,
            w13=layer.w13_weight,
            w13_scale=layer.w13_weight_scale,
            w13_scale_2=w13_weight_scale_2,
            a13_scale=layer.w13_input_scale,
            w2=layer.w2_weight,
            w2_scale=layer.w2_weight_scale,
            w2_scale_2=layer.w2_weight_scale_2,
            a2_scale=layer.w2_input_scale,
            is_act_and_mul=self.moe.is_act_and_mul,
        )

        replace_parameter(layer, "w13_weight", w13)
        replace_parameter(layer, "w13_weight_scale", w13_scale)
        replace_parameter(layer, "w13_weight_scale_2", w13_scale_2)
        replace_parameter(layer, "w13_input_scale", a13_scale)
        replace_parameter(layer, "w2_weight", w2)
        replace_parameter(layer, "w2_weight_scale", w2_scale)
        replace_parameter(layer, "w2_weight_scale_2", w2_scale_2)
        replace_parameter(layer, "w2_input_scale", a2_scale)

        self.moe_quant_config = self.get_fused_moe_quant_config(layer)
        use_dp = self.moe.dp_size > 1
        if self.moe_quant_config is not None and not use_dp:
            self.kernel = make_nvfp4_moe_kernel(
                backend=self.nvfp4_backend,
                quant_config=self.moe_quant_config,
                moe_config=self.moe,
            )

    def prepare_dp_allgather_tensor(
        self,
        layer: FusedMoE,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> tuple[torch.Tensor, list[torch.Tensor]]:
        """Optionally prepare extra tensors to carry through DP allgather/EP."""
        import flashinfer

        assert self.moe_quant_config is not None
        a1_gscale = self.moe_quant_config.a1_gscale
        hidden_states_fp4, hidden_states_sf = flashinfer.fp4_quantize(
            hidden_states,
            a1_gscale,
            is_sf_swizzled_layout=False,
        )
        extra_tensors: list[torch.Tensor] = [hidden_states_sf]
        return hidden_states_fp4, extra_tensors

    def get_fused_moe_quant_config(
        self, layer: torch.nn.Module
    ) -> FusedMoEQuantConfig | None:
        return make_nvfp4_moe_quant_config(
            backend=self.nvfp4_backend,
            w13_scale=layer.w13_weight_scale,
            w2_scale=layer.w2_weight_scale,
            w13_scale_2=layer.w13_weight_scale_2,
            w2_scale_2=layer.w2_weight_scale_2,
            a13_scale=layer.w13_input_scale,
            a2_scale=layer.w2_input_scale,
        )

    @property
    def supports_eplb(self) -> bool:
        return True

    def apply(
        self,
        layer: FusedMoE,
        router: FusedMoERouter,
        x: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        if (
            self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_TRTLLM
            and not layer.enable_eplb
        ):
            return flashinfer_trtllm_fp4_moe(
                layer=layer,
                x=x,
                router_logits=router_logits,
                top_k=layer.top_k,
                global_num_experts=layer.global_num_experts,
                num_expert_group=layer.num_expert_group,
                topk_group=layer.topk_group,
                custom_routing_function=layer.custom_routing_function,
                e_score_correction_bias=layer.e_score_correction_bias,
            )

        # Hidden_states in select_experts is only used to extract metadata
        if isinstance(x, tuple):
            x_routing, _ = x
        else:
            x_routing = x
        topk_weights, topk_ids = router.select_experts(
            hidden_states=x_routing,
            router_logits=router_logits,
        )

        # EPLB path
        if self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_TRTLLM:
            assert layer.enable_eplb
            return flashinfer_trtllm_fp4_routed_moe(
                layer=layer,
                x=x,
                topk_ids=topk_ids,
                topk_weights=topk_weights,
                top_k=layer.top_k,
                global_num_experts=layer.global_num_experts,
            )
        else:
            assert self.kernel is not None
            return self.kernel(
                x,
                layer.w13_weight,
                layer.w2_weight,
                topk_weights,
                topk_ids,
                inplace=False,
                activation=layer.activation,
                global_num_experts=layer.global_num_experts,
                expert_map=layer.expert_map,
                apply_router_weight_on_input=layer.apply_router_weight_on_input,
            )

kernel instance-attribute

kernel: FusedMoEModularKernel | None = None

nvfp4_backend instance-attribute

nvfp4_backend = select_nvfp4_moe_backend()

quant_config instance-attribute

quant_config = quant_config

supports_eplb property

supports_eplb: bool

use_global_sf instance-attribute

use_global_sf = is_global_sf_supported_for_nvfp4_backend(
    nvfp4_backend
)

__init__

__init__(
    quant_config: ModelOptNvFp4Config,
    moe_config: FusedMoEConfig,
) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(
    self,
    quant_config: ModelOptNvFp4Config,
    moe_config: FusedMoEConfig,
) -> None:
    super().__init__(moe_config)
    self.quant_config = quant_config
    self.nvfp4_backend = select_nvfp4_moe_backend()
    # TODO: move this type of check into the oracle.
    if (
        not self.moe.is_act_and_mul
        and not self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_CUTLASS
    ):
        raise NotImplementedError(
            "Non-gated activations are only supported by FlashInfer "
            "CUTLASS NvFP4 MoE backend."
        )

    self.use_global_sf = is_global_sf_supported_for_nvfp4_backend(
        self.nvfp4_backend
    )
    self.kernel: mk.FusedMoEModularKernel | None = None

apply

apply(
    layer: FusedMoE,
    router: FusedMoERouter,
    x: Tensor,
    router_logits: Tensor,
) -> Tensor | tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/quantization/modelopt.py
def apply(
    self,
    layer: FusedMoE,
    router: FusedMoERouter,
    x: torch.Tensor,
    router_logits: torch.Tensor,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
    if (
        self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_TRTLLM
        and not layer.enable_eplb
    ):
        return flashinfer_trtllm_fp4_moe(
            layer=layer,
            x=x,
            router_logits=router_logits,
            top_k=layer.top_k,
            global_num_experts=layer.global_num_experts,
            num_expert_group=layer.num_expert_group,
            topk_group=layer.topk_group,
            custom_routing_function=layer.custom_routing_function,
            e_score_correction_bias=layer.e_score_correction_bias,
        )

    # Hidden_states in select_experts is only used to extract metadata
    if isinstance(x, tuple):
        x_routing, _ = x
    else:
        x_routing = x
    topk_weights, topk_ids = router.select_experts(
        hidden_states=x_routing,
        router_logits=router_logits,
    )

    # EPLB path
    if self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_TRTLLM:
        assert layer.enable_eplb
        return flashinfer_trtllm_fp4_routed_moe(
            layer=layer,
            x=x,
            topk_ids=topk_ids,
            topk_weights=topk_weights,
            top_k=layer.top_k,
            global_num_experts=layer.global_num_experts,
        )
    else:
        assert self.kernel is not None
        return self.kernel(
            x,
            layer.w13_weight,
            layer.w2_weight,
            topk_weights,
            topk_ids,
            inplace=False,
            activation=layer.activation,
            global_num_experts=layer.global_num_experts,
            expert_map=layer.expert_map,
            apply_router_weight_on_input=layer.apply_router_weight_on_input,
        )

create_weights

create_weights(
    layer: Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/modelopt.py
def create_weights(
    self,
    layer: torch.nn.Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: torch.dtype,
    **extra_weight_attrs,
):
    assert self.quant_config.is_checkpoint_nvfp4_serialized

    layer.num_experts = num_experts
    layer.params_dtype = params_dtype
    layer.quant_config = self.quant_config
    weight_dtype = torch.uint8
    weight_scale_dtype = torch.float8_e4m3fn
    weight_loader = extra_weight_attrs.get("weight_loader")
    global_num_experts = extra_weight_attrs.get("global_num_experts")
    # GEMM 1
    w13_weight = ModelWeightParameter(
        data=torch.empty(
            num_experts,
            (2 if self.moe.is_act_and_mul else 1) * intermediate_size_per_partition,
            # 2 fp4 items are packed in the input dimension
            hidden_size // 2,
            dtype=weight_dtype,
        ),
        input_dim=1,
        output_dim=2,
        weight_loader=weight_loader,
    )
    layer.register_parameter("w13_weight", w13_weight)

    # GEMM 2
    w2_weight = ModelWeightParameter(
        data=torch.empty(
            num_experts,
            hidden_size,
            # 2 fp4 items are packed in the input dimension
            intermediate_size_per_partition // 2,
            dtype=weight_dtype,
        ),
        input_dim=1,
        output_dim=2,
        weight_loader=weight_loader,
    )
    layer.register_parameter("w2_weight", w2_weight)

    w13_weight_scale = ModelWeightParameter(
        data=torch.empty(
            num_experts,
            (2 if self.moe.is_act_and_mul else 1) * intermediate_size_per_partition,
            # 2 fp4 items are packed in the input dimension
            hidden_size // self.quant_config.group_size,
            dtype=weight_scale_dtype,
        ),
        input_dim=1,
        output_dim=2,
        weight_loader=weight_loader,
    )
    layer.register_parameter("w13_weight_scale", w13_weight_scale)

    w2_weight_scale = ModelWeightParameter(
        data=torch.empty(
            num_experts,
            hidden_size,
            # 2 fp4 items are packed in the input dimension
            intermediate_size_per_partition // self.quant_config.group_size,
            dtype=weight_scale_dtype,
        ),
        input_dim=1,
        output_dim=2,
        weight_loader=weight_loader,
    )
    layer.register_parameter("w2_weight_scale", w2_weight_scale)

    extra_weight_attrs.update(
        {"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
    )

    w13_weight_scale_2 = PerTensorScaleParameter(
        data=torch.empty(
            num_experts, 2 if self.moe.is_act_and_mul else 1, dtype=torch.float32
        ),
        weight_loader=weight_loader,
    )
    layer.register_parameter("w13_weight_scale_2", w13_weight_scale_2)

    w2_weight_scale_2 = PerTensorScaleParameter(
        data=torch.empty(num_experts, dtype=torch.float32),
        weight_loader=weight_loader,
    )
    layer.register_parameter("w2_weight_scale_2", w2_weight_scale_2)

    extra_weight_attrs.update(
        {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
    )

    global_sf_num_experts = (
        global_num_experts if self.use_global_sf else num_experts
    )
    w13_input_scale = PerTensorScaleParameter(
        data=torch.empty(
            global_sf_num_experts,
            2 if self.moe.is_act_and_mul else 1,
            dtype=torch.float32,
        ),
        weight_loader=weight_loader,
    )
    layer.register_parameter("w13_input_scale", w13_input_scale)

    w2_input_scale = PerTensorScaleParameter(
        data=torch.empty(global_sf_num_experts, dtype=torch.float32),
        weight_loader=weight_loader,
    )
    layer.register_parameter("w2_input_scale", w2_input_scale)

get_fused_moe_quant_config

get_fused_moe_quant_config(
    layer: Module,
) -> FusedMoEQuantConfig | None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def get_fused_moe_quant_config(
    self, layer: torch.nn.Module
) -> FusedMoEQuantConfig | None:
    return make_nvfp4_moe_quant_config(
        backend=self.nvfp4_backend,
        w13_scale=layer.w13_weight_scale,
        w2_scale=layer.w2_weight_scale,
        w13_scale_2=layer.w13_weight_scale_2,
        w2_scale_2=layer.w2_weight_scale_2,
        a13_scale=layer.w13_input_scale,
        a2_scale=layer.w2_input_scale,
    )

maybe_make_prepare_finalize

maybe_make_prepare_finalize(
    routing_tables: tuple[Tensor, Tensor, Tensor]
    | None = None,
) -> FusedMoEPrepareAndFinalize | None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def maybe_make_prepare_finalize(
    self,
    routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
) -> mk.FusedMoEPrepareAndFinalize | None:
    UNSUPPORTED = [NvFp4MoeBackend.MARLIN, NvFp4MoeBackend.FLASHINFER_TRTLLM]
    if self.nvfp4_backend in UNSUPPORTED:
        return None
    elif self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_CUTLASS:
        # TP case: avoid convert to ModularKernelMethod - to be refactored.
        if self.moe.dp_size == 1:
            return None
        # For now, fp4 moe only works with the flashinfer dispatcher.
        prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(
            self.moe
        )
        logger.debug_once("%s", prepare_finalize.__class__.__name__)
        return prepare_finalize
    else:
        return super().maybe_make_prepare_finalize(routing_tables)

prepare_dp_allgather_tensor

prepare_dp_allgather_tensor(
    layer: FusedMoE,
    hidden_states: Tensor,
    router_logits: Tensor,
) -> tuple[Tensor, list[Tensor]]

Optionally prepare extra tensors to carry through DP allgather/EP.

Source code in vllm/model_executor/layers/quantization/modelopt.py
def prepare_dp_allgather_tensor(
    self,
    layer: FusedMoE,
    hidden_states: torch.Tensor,
    router_logits: torch.Tensor,
) -> tuple[torch.Tensor, list[torch.Tensor]]:
    """Optionally prepare extra tensors to carry through DP allgather/EP."""
    import flashinfer

    assert self.moe_quant_config is not None
    a1_gscale = self.moe_quant_config.a1_gscale
    hidden_states_fp4, hidden_states_sf = flashinfer.fp4_quantize(
        hidden_states,
        a1_gscale,
        is_sf_swizzled_layout=False,
    )
    extra_tensors: list[torch.Tensor] = [hidden_states_sf]
    return hidden_states_fp4, extra_tensors

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None

Convert NVFP4 MoE weights into kernel format and setup the kernel.

Source code in vllm/model_executor/layers/quantization/modelopt.py
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
    """
    Convert NVFP4 MoE weights into kernel format and setup the kernel.
    """

    # Use a single gscale for w13.
    if self.moe.is_act_and_mul and not torch.allclose(
        layer.w13_weight_scale_2[:, 0], layer.w13_weight_scale_2[:, 1]
    ):
        logger.warning_once(
            "w1_weight_scale_2 must match w3_weight_scale_2. "
            "Accuracy may be affected."
        )
    w13_weight_scale_2 = layer.w13_weight_scale_2[:, 0].contiguous()

    (
        w13,
        w13_scale,
        w13_scale_2,
        a13_scale,
        w2,
        w2_scale,
        w2_scale_2,
        a2_scale,
    ) = convert_to_nvfp4_moe_kernel_format(
        nvfp4_backend=self.nvfp4_backend,
        layer=layer,
        w13=layer.w13_weight,
        w13_scale=layer.w13_weight_scale,
        w13_scale_2=w13_weight_scale_2,
        a13_scale=layer.w13_input_scale,
        w2=layer.w2_weight,
        w2_scale=layer.w2_weight_scale,
        w2_scale_2=layer.w2_weight_scale_2,
        a2_scale=layer.w2_input_scale,
        is_act_and_mul=self.moe.is_act_and_mul,
    )

    replace_parameter(layer, "w13_weight", w13)
    replace_parameter(layer, "w13_weight_scale", w13_scale)
    replace_parameter(layer, "w13_weight_scale_2", w13_scale_2)
    replace_parameter(layer, "w13_input_scale", a13_scale)
    replace_parameter(layer, "w2_weight", w2)
    replace_parameter(layer, "w2_weight_scale", w2_scale)
    replace_parameter(layer, "w2_weight_scale_2", w2_scale_2)
    replace_parameter(layer, "w2_input_scale", a2_scale)

    self.moe_quant_config = self.get_fused_moe_quant_config(layer)
    use_dp = self.moe.dp_size > 1
    if self.moe_quant_config is not None and not use_dp:
        self.kernel = make_nvfp4_moe_kernel(
            backend=self.nvfp4_backend,
            quant_config=self.moe_quant_config,
            moe_config=self.moe,
        )

select_gemm_impl

select_gemm_impl(
    prepare_finalize: FusedMoEPrepareAndFinalize,
    layer: Module,
) -> FusedMoEPermuteExpertsUnpermute
Source code in vllm/model_executor/layers/quantization/modelopt.py
def select_gemm_impl(
    self,
    prepare_finalize: mk.FusedMoEPrepareAndFinalize,
    layer: torch.nn.Module,
) -> mk.FusedMoEPermuteExpertsUnpermute:
    assert self.moe_quant_config is not None
    experts = select_nvfp4_gemm_impl(
        self.moe,
        self.moe_quant_config,
        allow_flashinfer=self.nvfp4_backend in FLASHINFER_NVFP4_MOE_BACKENDS,
    )
    logger.debug_once("Using %s", experts.__class__.__name__)
    return experts

uses_weight_scale_2_pattern

uses_weight_scale_2_pattern() -> bool

FP4 variants use 'weight_scale_2' pattern for per-tensor weight scales.

Source code in vllm/model_executor/layers/quantization/modelopt.py
def uses_weight_scale_2_pattern(self) -> bool:
    """
    FP4 variants use 'weight_scale_2' pattern for per-tensor weight scales.
    """
    return True

ModelOptNvFp4LinearMethod

Bases: LinearMethodBase

Linear method for Model Optimizer NVFP4. Supports loading NVFP4 checkpoints with the following structure:

input_scale: torch.float32, scalar , weight: NVFP4(represented as byte) Shape: [1, X, y/2] weight_scale: FP8-E4M3, Shape: [X, Y], aka per block scale, weight_scale_2: torch.float32, scalar, Args: quant_config: The ModelOpt quantization config.

Source code in vllm/model_executor/layers/quantization/modelopt.py
class ModelOptNvFp4LinearMethod(LinearMethodBase):
    """Linear method for Model Optimizer NVFP4.
    Supports loading NVFP4 checkpoints with the following structure:

    input_scale: torch.float32, scalar ,
    weight: NVFP4(represented as byte) Shape: [1, X, y/2]
    weight_scale: FP8-E4M3, Shape: [X, Y], aka per block scale,
    weight_scale_2: torch.float32, scalar,
    Args: quant_config: The ModelOpt quantization config.
    """

    def __init__(self, quant_config: ModelOptNvFp4Config) -> None:
        self.quant_config = quant_config
        self.marlin_input_dtype = None

        self.backend = "none"
        if envs.VLLM_NVFP4_GEMM_BACKEND is None:
            if has_flashinfer():
                self.backend = "flashinfer-cutlass"
            elif cutlass_fp4_supported():
                self.backend = "cutlass"
            elif is_fp4_marlin_supported():
                self.backend = "marlin"
        elif envs.VLLM_NVFP4_GEMM_BACKEND.startswith("flashinfer-"):
            self.backend = envs.VLLM_NVFP4_GEMM_BACKEND
            assert has_flashinfer(), f"FlashInfer is required for {self.backend}"
        elif envs.VLLM_NVFP4_GEMM_BACKEND == "cutlass":
            self.backend = "cutlass"
            assert cutlass_fp4_supported(), f"Cutlass is required for {self.backend}"

        if self.backend == "none":
            raise ValueError(
                "No valid NVFP4 GEMM backend found. "
                "Please check your platform capability."
            )

        logger.info_once(f"Using {self.backend} for NVFP4 GEMM")

    def create_weights(
        self,
        layer: torch.nn.Module,
        input_size_per_partition: int,
        output_partition_sizes: list[int],
        input_size: int,
        output_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        del input_size, output_size
        if not self.quant_config.is_checkpoint_nvfp4_serialized:
            raise ValueError(
                "NVFP4 quantization was selected, "
                " dynamic quantization is not supported."
            )
        output_size_per_partition = sum(output_partition_sizes)
        weight_loader = extra_weight_attrs.get("weight_loader")
        layer.logical_widths = output_partition_sizes
        layer.input_size_per_partition = input_size_per_partition
        layer.output_size_per_partition = output_size_per_partition

        if input_size_per_partition % 16 != 0:
            raise ValueError(
                "Unsupported model when in features size is not multiple of 16"
            )
        # The nvfp4 weight is still represented as
        weight_dtype = (
            torch.float8_e4m3fn
            if self.quant_config.is_checkpoint_nvfp4_serialized
            else params_dtype
        )
        # Weight
        weight = ModelWeightParameter(
            data=torch.empty(
                # 2 fp4 items are packed in the input dimension
                layer.output_size_per_partition,
                layer.input_size_per_partition // 2,
                dtype=torch.uint8,
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )
        layer.register_parameter("weight", weight)

        # Input Weight Scale
        input_scale = PerTensorScaleParameter(
            data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("input_scale", input_scale)

        # Global Weight Scale
        weight_scale_2 = PerTensorScaleParameter(
            data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("weight_scale_2", weight_scale_2)

        # Per Block Weight Scale
        weight_scale = ModelWeightParameter(
            data=torch.empty(
                output_size_per_partition,
                input_size_per_partition // self.quant_config.group_size,
                dtype=weight_dtype,
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )

        layer.register_parameter("weight_scale", weight_scale)

    def process_weights_after_loading(self, layer: Module) -> None:
        # global scales:
        input_scale_2 = layer.input_scale.max().to(torch.float32)
        layer.input_scale = Parameter(input_scale_2, requires_grad=False)

        weight_scale_2 = layer.weight_scale_2.max().to(torch.float32)
        layer.weight_scale_2 = Parameter(weight_scale_2, requires_grad=False)

        layer.alpha = Parameter(
            layer.input_scale * layer.weight_scale_2, requires_grad=False
        )

        # Calculate `1 / input_scale` so that we don't need to do so at runtime
        layer.input_scale_inv = Parameter(
            (1 / layer.input_scale).to(torch.float32), requires_grad=False
        )

        # Swizzle the weight blockscale.
        # contracting dimension is input dimension
        # block_size = 16;
        assert layer.weight_scale.dtype == torch.float8_e4m3fn, (
            "Weight Block scale must be represented as FP8-E4M3"
        )

        if self.backend == "marlin":
            prepare_fp4_layer_for_marlin(layer)
            del layer.alpha
            del layer.input_scale
        elif self.backend == "flashinfer-trtllm":
            # FlashInfer TRTLLM FP4 GEMM requires a different weight layout.
            # FlashInfer provides nvfp4_quantize to quantize + shuffle the
            # layout but we use our own quantization so we have to call
            # shuffles ourselves.
            from flashinfer import shuffle_matrix_a, shuffle_matrix_sf_a

            weight = layer.weight.data
            weight_scale = layer.weight_scale.data

            epilogue_tile_m = 128
            weight = shuffle_matrix_a(weight.view(torch.uint8), epilogue_tile_m)
            weight_scale = (
                shuffle_matrix_sf_a(weight_scale.view(torch.uint8), epilogue_tile_m)
                .reshape(weight_scale.shape)
                .view(torch.float8_e4m3fn)
            )

            layer.weight_scale = Parameter(weight_scale, requires_grad=False)
            layer.weight = Parameter(weight, requires_grad=False)
        else:
            swizzled_weight_scale = swizzle_blockscale(layer.weight_scale)
            layer.weight_scale = Parameter(swizzled_weight_scale, requires_grad=False)
            layer.weight = Parameter(layer.weight.data, requires_grad=False)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: torch.Tensor | None = None,
    ) -> torch.Tensor:
        if self.backend == "marlin":
            return apply_fp4_marlin_linear(
                input=x,
                weight=layer.weight,
                weight_scale=layer.weight_scale,
                weight_scale_2=layer.weight_scale_2,
                workspace=layer.workspace,
                size_n=layer.output_size_per_partition,
                size_k=layer.input_size_per_partition,
                bias=bias,
                input_dtype=self.marlin_input_dtype,
            )

        output_dtype = x.dtype
        output_shape = [x.shape[0], layer.weight.shape[0]]

        # quantize BF16 or FP16 to (FP4 and interleaved block scale)
        x_fp4, x_blockscale = scaled_fp4_quant(x, layer.input_scale_inv, self.backend)

        # validate dtypes of quantized input, input block scale,
        # weight and weight_blockscale
        assert x_fp4.dtype == torch.uint8
        assert layer.weight.dtype == torch.uint8
        assert x_blockscale.dtype == torch.float8_e4m3fn
        assert layer.weight_scale.dtype == torch.float8_e4m3fn
        assert layer.alpha.dtype == torch.float32

        mm_args = (
            x_fp4,
            layer.weight,
            x_blockscale,
            layer.weight_scale,
            layer.alpha,
            output_dtype,
        )
        if self.backend.startswith("flashinfer-"):
            backend_name = self.backend[len("flashinfer-") :]
            out = flashinfer_scaled_fp4_mm(*mm_args, backend=backend_name)
        else:
            assert self.backend == "cutlass"
            out = cutlass_scaled_fp4_mm(*mm_args)

        if bias is not None:
            out = out + bias
        return out.view(*output_shape)

backend instance-attribute

backend = 'none'

marlin_input_dtype instance-attribute

marlin_input_dtype = None

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(quant_config: ModelOptNvFp4Config) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(self, quant_config: ModelOptNvFp4Config) -> None:
    self.quant_config = quant_config
    self.marlin_input_dtype = None

    self.backend = "none"
    if envs.VLLM_NVFP4_GEMM_BACKEND is None:
        if has_flashinfer():
            self.backend = "flashinfer-cutlass"
        elif cutlass_fp4_supported():
            self.backend = "cutlass"
        elif is_fp4_marlin_supported():
            self.backend = "marlin"
    elif envs.VLLM_NVFP4_GEMM_BACKEND.startswith("flashinfer-"):
        self.backend = envs.VLLM_NVFP4_GEMM_BACKEND
        assert has_flashinfer(), f"FlashInfer is required for {self.backend}"
    elif envs.VLLM_NVFP4_GEMM_BACKEND == "cutlass":
        self.backend = "cutlass"
        assert cutlass_fp4_supported(), f"Cutlass is required for {self.backend}"

    if self.backend == "none":
        raise ValueError(
            "No valid NVFP4 GEMM backend found. "
            "Please check your platform capability."
        )

    logger.info_once(f"Using {self.backend} for NVFP4 GEMM")

apply

apply(
    layer: Module, x: Tensor, bias: Tensor | None = None
) -> Tensor
Source code in vllm/model_executor/layers/quantization/modelopt.py
def apply(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    bias: torch.Tensor | None = None,
) -> torch.Tensor:
    if self.backend == "marlin":
        return apply_fp4_marlin_linear(
            input=x,
            weight=layer.weight,
            weight_scale=layer.weight_scale,
            weight_scale_2=layer.weight_scale_2,
            workspace=layer.workspace,
            size_n=layer.output_size_per_partition,
            size_k=layer.input_size_per_partition,
            bias=bias,
            input_dtype=self.marlin_input_dtype,
        )

    output_dtype = x.dtype
    output_shape = [x.shape[0], layer.weight.shape[0]]

    # quantize BF16 or FP16 to (FP4 and interleaved block scale)
    x_fp4, x_blockscale = scaled_fp4_quant(x, layer.input_scale_inv, self.backend)

    # validate dtypes of quantized input, input block scale,
    # weight and weight_blockscale
    assert x_fp4.dtype == torch.uint8
    assert layer.weight.dtype == torch.uint8
    assert x_blockscale.dtype == torch.float8_e4m3fn
    assert layer.weight_scale.dtype == torch.float8_e4m3fn
    assert layer.alpha.dtype == torch.float32

    mm_args = (
        x_fp4,
        layer.weight,
        x_blockscale,
        layer.weight_scale,
        layer.alpha,
        output_dtype,
    )
    if self.backend.startswith("flashinfer-"):
        backend_name = self.backend[len("flashinfer-") :]
        out = flashinfer_scaled_fp4_mm(*mm_args, backend=backend_name)
    else:
        assert self.backend == "cutlass"
        out = cutlass_scaled_fp4_mm(*mm_args)

    if bias is not None:
        out = out + bias
    return out.view(*output_shape)

create_weights

create_weights(
    layer: Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/modelopt.py
def create_weights(
    self,
    layer: torch.nn.Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: torch.dtype,
    **extra_weight_attrs,
):
    del input_size, output_size
    if not self.quant_config.is_checkpoint_nvfp4_serialized:
        raise ValueError(
            "NVFP4 quantization was selected, "
            " dynamic quantization is not supported."
        )
    output_size_per_partition = sum(output_partition_sizes)
    weight_loader = extra_weight_attrs.get("weight_loader")
    layer.logical_widths = output_partition_sizes
    layer.input_size_per_partition = input_size_per_partition
    layer.output_size_per_partition = output_size_per_partition

    if input_size_per_partition % 16 != 0:
        raise ValueError(
            "Unsupported model when in features size is not multiple of 16"
        )
    # The nvfp4 weight is still represented as
    weight_dtype = (
        torch.float8_e4m3fn
        if self.quant_config.is_checkpoint_nvfp4_serialized
        else params_dtype
    )
    # Weight
    weight = ModelWeightParameter(
        data=torch.empty(
            # 2 fp4 items are packed in the input dimension
            layer.output_size_per_partition,
            layer.input_size_per_partition // 2,
            dtype=torch.uint8,
        ),
        input_dim=1,
        output_dim=0,
        weight_loader=weight_loader,
    )
    layer.register_parameter("weight", weight)

    # Input Weight Scale
    input_scale = PerTensorScaleParameter(
        data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
        weight_loader=weight_loader,
    )
    layer.register_parameter("input_scale", input_scale)

    # Global Weight Scale
    weight_scale_2 = PerTensorScaleParameter(
        data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
        weight_loader=weight_loader,
    )
    layer.register_parameter("weight_scale_2", weight_scale_2)

    # Per Block Weight Scale
    weight_scale = ModelWeightParameter(
        data=torch.empty(
            output_size_per_partition,
            input_size_per_partition // self.quant_config.group_size,
            dtype=weight_dtype,
        ),
        input_dim=1,
        output_dim=0,
        weight_loader=weight_loader,
    )

    layer.register_parameter("weight_scale", weight_scale)

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/modelopt.py
def process_weights_after_loading(self, layer: Module) -> None:
    # global scales:
    input_scale_2 = layer.input_scale.max().to(torch.float32)
    layer.input_scale = Parameter(input_scale_2, requires_grad=False)

    weight_scale_2 = layer.weight_scale_2.max().to(torch.float32)
    layer.weight_scale_2 = Parameter(weight_scale_2, requires_grad=False)

    layer.alpha = Parameter(
        layer.input_scale * layer.weight_scale_2, requires_grad=False
    )

    # Calculate `1 / input_scale` so that we don't need to do so at runtime
    layer.input_scale_inv = Parameter(
        (1 / layer.input_scale).to(torch.float32), requires_grad=False
    )

    # Swizzle the weight blockscale.
    # contracting dimension is input dimension
    # block_size = 16;
    assert layer.weight_scale.dtype == torch.float8_e4m3fn, (
        "Weight Block scale must be represented as FP8-E4M3"
    )

    if self.backend == "marlin":
        prepare_fp4_layer_for_marlin(layer)
        del layer.alpha
        del layer.input_scale
    elif self.backend == "flashinfer-trtllm":
        # FlashInfer TRTLLM FP4 GEMM requires a different weight layout.
        # FlashInfer provides nvfp4_quantize to quantize + shuffle the
        # layout but we use our own quantization so we have to call
        # shuffles ourselves.
        from flashinfer import shuffle_matrix_a, shuffle_matrix_sf_a

        weight = layer.weight.data
        weight_scale = layer.weight_scale.data

        epilogue_tile_m = 128
        weight = shuffle_matrix_a(weight.view(torch.uint8), epilogue_tile_m)
        weight_scale = (
            shuffle_matrix_sf_a(weight_scale.view(torch.uint8), epilogue_tile_m)
            .reshape(weight_scale.shape)
            .view(torch.float8_e4m3fn)
        )

        layer.weight_scale = Parameter(weight_scale, requires_grad=False)
        layer.weight = Parameter(weight, requires_grad=False)
    else:
        swizzled_weight_scale = swizzle_blockscale(layer.weight_scale)
        layer.weight_scale = Parameter(swizzled_weight_scale, requires_grad=False)
        layer.weight = Parameter(layer.weight.data, requires_grad=False)

ModelOptQuantConfigBase

Bases: QuantizationConfig

Source code in vllm/model_executor/layers/quantization/modelopt.py
class ModelOptQuantConfigBase(QuantizationConfig):
    LinearMethodCls: type = LinearMethodBase
    FusedMoEMethodCls: type = FusedMoEMethodBase
    KVCacheMethodCls: type = BaseKVCacheMethod

    def __init__(
        self,
        exclude_modules: list[str],
    ):
        super().__init__()
        self.exclude_modules: list[str] = exclude_modules

    def is_layer_excluded(self, prefix: str) -> bool:
        """
        Check if a layer should be excluded from quantization.

        Handles both exact matching (for fused layers) and ModelOpt wildcard matching.

        The ModelOpt exclude_modules list is a list of wildcards.
        """
        if len(self.exclude_modules) == 0:
            return False

        # First check exact matching with fused layer support
        if is_layer_skipped(prefix, self.exclude_modules, self.packed_modules_mapping):
            return True

        # TODO: This special hard coded logic is not needed for quantized checkpoints
        # generated by ModelOpt >= 0.39.0 where they are handled natually by the
        # exclude_modules config. But need to keep them for loading quantized
        # checkpoints generated by older versions. Then check substring matching
        # for patterns not caught by exact match
        for exclude_module in self.exclude_modules:
            # Skip exact matches already handled above
            if exclude_module != prefix and (
                exclude_module in prefix
                or (
                    prefix.startswith("language_model.")
                    and exclude_module in prefix.removeprefix("language_model.")
                )
            ):
                return True

        # modelopt exclude modules are not simple strings, they are wildcards
        for wildcard_pattern in self.exclude_modules:
            if fnmatch(prefix, wildcard_pattern):
                return True

        return False

    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        # handle kv-cache first so we can focus only on weight quantization thereafter
        if isinstance(layer, Attention):
            return self.KVCacheMethodCls(self)

        # handle exclusion
        if self.is_layer_excluded(prefix):
            if isinstance(layer, LinearBase):
                return UnquantizedLinearMethod()
            return None

        # TODO: This special hard coded logic is not needed for quantized checkpoints
        # generated by ModelOpt >= 0.39.0 where they are handled natually by the
        # exclude_modules config. But need to keep them for loading quantized
        # checkpoints generated by older versions. Then check substring matching
        # for patterns not caught by exact match
        if "vision_tower" in prefix or "vision_model" in prefix:
            return UnquantizedLinearMethod()

        # now, the layer is quantized, handle it here
        if isinstance(layer, LinearBase):
            quant_method = self.LinearMethodCls(self)
            if getattr(quant_method, "backend", "") == "marlin":
                quant_method.marlin_input_dtype = get_marlin_input_dtype(prefix)
            return quant_method
        elif isinstance(layer, FusedMoE):
            quant_method = self.FusedMoEMethodCls(
                quant_config=self, moe_config=layer.moe_config
            )
            if getattr(quant_method, "backend", "") == "marlin":
                quant_method.marlin_input_dtype = get_marlin_input_dtype(prefix)
            return quant_method

        return None

    def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"):
        if len(self.exclude_modules) > 0:
            # This is a workaround for the weights remapping issue:
            # https://github.com/vllm-project/vllm/issues/28072
            # Right now, the Nvidia ModelOpt library use just one wildcard pattern:
            #        module_path*
            # It gets applied if the whole tree of modules rooted at module_path
            # is not quantized. Here we replace such pattern by 2 patterns that are
            # collectively equivalent to the original pattern:
            #        module_path
            #        module_path.*
            new_exclude_modules = []
            for exclude in self.exclude_modules:
                if len(exclude) >= 2 and exclude[-1] == "*" and exclude[-2] != ".":
                    new_exclude_modules.append(exclude[:-1])
                    new_exclude_modules.append(exclude[:-1] + ".*")
                else:
                    new_exclude_modules.append(exclude)

            self.exclude_modules = hf_to_vllm_mapper.apply_list(new_exclude_modules)

    @staticmethod
    def get_config_filenames() -> list[str]:
        return ["hf_quant_config.json"]

    @classmethod
    def _from_config(
        cls,
        *,
        quant_method: str,
        kv_cache_quant_method: str | None,
        exclude_modules: list[str],
        original_config: dict[str, Any],
        group_size: int | None,
    ) -> "ModelOptQuantConfigBase":
        raise NotImplementedError("Please implement this function in sub classes")

    @classmethod
    def from_config(cls, config: dict[str, Any]) -> "ModelOptQuantConfigBase":
        # Handle both ModelOpt format and compressed-tensors style format
        if "quantization" in config:
            # Traditional ModelOpt format:
            # {"quantization": {"quant_algo": "..."}}
            quant_config = cls.get_from_keys(config, ["quantization"])
            if not isinstance(quant_config, dict):
                raise ValueError("Expected 'quantization' to be a dictionary in config")

            quant_method = quant_config.get("quant_algo")

            # Handle kv_cache_quant_algo with proper type validation
            kv_cache_quant_method = quant_config.get("kv_cache_quant_algo")

            # Handle group_size with proper type validation
            group_size_raw = quant_config.get("group_size")

            # "exclude_modules" is the key in the legacy hf_quant_config.json
            exclude_modules = quant_config.get("exclude_modules", [])
        else:
            # Compressed-tensors style format:
            # {"quant_algo": "...", "quant_method": "modelopt"}
            quant_method = config.get("quant_algo")
            kv_cache_quant_method = config.get("kv_cache_quant_algo")
            # "ignore" is the key in config.json
            exclude_modules = config.get("ignore", [])
            group_size_raw = config.get("group_size")

        if not quant_method:
            raise ValueError("Missing 'quant_algo' in quantization config")

        # Normalize quant_algo for robust matching (ModelOpt may emit lowercase).
        quant_method = str(quant_method).upper()

        if kv_cache_quant_method is None:
            # No KV cache quantization, keep this branch just to have this comment
            pass
        elif not isinstance(kv_cache_quant_method, str):
            raise ValueError(
                f"kv_cache_quant_algo must be a string, got "
                f"{type(kv_cache_quant_method)}"
            )
        else:
            kv_cache_quant_method = kv_cache_quant_method.upper()

        if not isinstance(exclude_modules, list):
            raise ValueError(
                f"exclude_modules must be a list, got {type(exclude_modules)}"
            )

        if group_size_raw is None:
            group_size = None
        elif isinstance(group_size_raw, int):
            group_size = group_size_raw
        else:
            try:
                group_size = int(group_size_raw)
            except (ValueError, TypeError):
                raise ValueError(
                    f"group_size must be an integer, got {type(group_size_raw)}"
                ) from None

        if quant_method not in QUANT_ALGOS:
            raise ValueError(
                f"ModelOpt currently only supports: {QUANT_ALGOS} "
                "quantizations in vLLM. Please check the "
                "`hf_quant_config.json` file for your model's "
                "quant configuration."
            )
        return cls._from_config(
            quant_method=quant_method,
            kv_cache_quant_method=kv_cache_quant_method,
            exclude_modules=exclude_modules,
            group_size=group_size,
            original_config=config,
        )

FusedMoEMethodCls class-attribute instance-attribute

FusedMoEMethodCls: type = FusedMoEMethodBase

KVCacheMethodCls class-attribute instance-attribute

KVCacheMethodCls: type = BaseKVCacheMethod

LinearMethodCls class-attribute instance-attribute

LinearMethodCls: type = LinearMethodBase

exclude_modules instance-attribute

exclude_modules: list[str] = exclude_modules

__init__

__init__(exclude_modules: list[str])
Source code in vllm/model_executor/layers/quantization/modelopt.py
def __init__(
    self,
    exclude_modules: list[str],
):
    super().__init__()
    self.exclude_modules: list[str] = exclude_modules

_from_config classmethod

_from_config(
    *,
    quant_method: str,
    kv_cache_quant_method: str | None,
    exclude_modules: list[str],
    original_config: dict[str, Any],
    group_size: int | None,
) -> ModelOptQuantConfigBase
Source code in vllm/model_executor/layers/quantization/modelopt.py
@classmethod
def _from_config(
    cls,
    *,
    quant_method: str,
    kv_cache_quant_method: str | None,
    exclude_modules: list[str],
    original_config: dict[str, Any],
    group_size: int | None,
) -> "ModelOptQuantConfigBase":
    raise NotImplementedError("Please implement this function in sub classes")

apply_vllm_mapper

apply_vllm_mapper(hf_to_vllm_mapper: WeightsMapper)
Source code in vllm/model_executor/layers/quantization/modelopt.py
def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"):
    if len(self.exclude_modules) > 0:
        # This is a workaround for the weights remapping issue:
        # https://github.com/vllm-project/vllm/issues/28072
        # Right now, the Nvidia ModelOpt library use just one wildcard pattern:
        #        module_path*
        # It gets applied if the whole tree of modules rooted at module_path
        # is not quantized. Here we replace such pattern by 2 patterns that are
        # collectively equivalent to the original pattern:
        #        module_path
        #        module_path.*
        new_exclude_modules = []
        for exclude in self.exclude_modules:
            if len(exclude) >= 2 and exclude[-1] == "*" and exclude[-2] != ".":
                new_exclude_modules.append(exclude[:-1])
                new_exclude_modules.append(exclude[:-1] + ".*")
            else:
                new_exclude_modules.append(exclude)

        self.exclude_modules = hf_to_vllm_mapper.apply_list(new_exclude_modules)

from_config classmethod

from_config(
    config: dict[str, Any],
) -> ModelOptQuantConfigBase
Source code in vllm/model_executor/layers/quantization/modelopt.py
@classmethod
def from_config(cls, config: dict[str, Any]) -> "ModelOptQuantConfigBase":
    # Handle both ModelOpt format and compressed-tensors style format
    if "quantization" in config:
        # Traditional ModelOpt format:
        # {"quantization": {"quant_algo": "..."}}
        quant_config = cls.get_from_keys(config, ["quantization"])
        if not isinstance(quant_config, dict):
            raise ValueError("Expected 'quantization' to be a dictionary in config")

        quant_method = quant_config.get("quant_algo")

        # Handle kv_cache_quant_algo with proper type validation
        kv_cache_quant_method = quant_config.get("kv_cache_quant_algo")

        # Handle group_size with proper type validation
        group_size_raw = quant_config.get("group_size")

        # "exclude_modules" is the key in the legacy hf_quant_config.json
        exclude_modules = quant_config.get("exclude_modules", [])
    else:
        # Compressed-tensors style format:
        # {"quant_algo": "...", "quant_method": "modelopt"}
        quant_method = config.get("quant_algo")
        kv_cache_quant_method = config.get("kv_cache_quant_algo")
        # "ignore" is the key in config.json
        exclude_modules = config.get("ignore", [])
        group_size_raw = config.get("group_size")

    if not quant_method:
        raise ValueError("Missing 'quant_algo' in quantization config")

    # Normalize quant_algo for robust matching (ModelOpt may emit lowercase).
    quant_method = str(quant_method).upper()

    if kv_cache_quant_method is None:
        # No KV cache quantization, keep this branch just to have this comment
        pass
    elif not isinstance(kv_cache_quant_method, str):
        raise ValueError(
            f"kv_cache_quant_algo must be a string, got "
            f"{type(kv_cache_quant_method)}"
        )
    else:
        kv_cache_quant_method = kv_cache_quant_method.upper()

    if not isinstance(exclude_modules, list):
        raise ValueError(
            f"exclude_modules must be a list, got {type(exclude_modules)}"
        )

    if group_size_raw is None:
        group_size = None
    elif isinstance(group_size_raw, int):
        group_size = group_size_raw
    else:
        try:
            group_size = int(group_size_raw)
        except (ValueError, TypeError):
            raise ValueError(
                f"group_size must be an integer, got {type(group_size_raw)}"
            ) from None

    if quant_method not in QUANT_ALGOS:
        raise ValueError(
            f"ModelOpt currently only supports: {QUANT_ALGOS} "
            "quantizations in vLLM. Please check the "
            "`hf_quant_config.json` file for your model's "
            "quant configuration."
        )
    return cls._from_config(
        quant_method=quant_method,
        kv_cache_quant_method=kv_cache_quant_method,
        exclude_modules=exclude_modules,
        group_size=group_size,
        original_config=config,
    )

get_config_filenames staticmethod

get_config_filenames() -> list[str]
Source code in vllm/model_executor/layers/quantization/modelopt.py
@staticmethod
def get_config_filenames() -> list[str]:
    return ["hf_quant_config.json"]

get_quant_method

get_quant_method(
    layer: Module, prefix: str
) -> Optional[QuantizeMethodBase]
Source code in vllm/model_executor/layers/quantization/modelopt.py
def get_quant_method(
    self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
    # handle kv-cache first so we can focus only on weight quantization thereafter
    if isinstance(layer, Attention):
        return self.KVCacheMethodCls(self)

    # handle exclusion
    if self.is_layer_excluded(prefix):
        if isinstance(layer, LinearBase):
            return UnquantizedLinearMethod()
        return None

    # TODO: This special hard coded logic is not needed for quantized checkpoints
    # generated by ModelOpt >= 0.39.0 where they are handled natually by the
    # exclude_modules config. But need to keep them for loading quantized
    # checkpoints generated by older versions. Then check substring matching
    # for patterns not caught by exact match
    if "vision_tower" in prefix or "vision_model" in prefix:
        return UnquantizedLinearMethod()

    # now, the layer is quantized, handle it here
    if isinstance(layer, LinearBase):
        quant_method = self.LinearMethodCls(self)
        if getattr(quant_method, "backend", "") == "marlin":
            quant_method.marlin_input_dtype = get_marlin_input_dtype(prefix)
        return quant_method
    elif isinstance(layer, FusedMoE):
        quant_method = self.FusedMoEMethodCls(
            quant_config=self, moe_config=layer.moe_config
        )
        if getattr(quant_method, "backend", "") == "marlin":
            quant_method.marlin_input_dtype = get_marlin_input_dtype(prefix)
        return quant_method

    return None

is_layer_excluded

is_layer_excluded(prefix: str) -> bool

Check if a layer should be excluded from quantization.

Handles both exact matching (for fused layers) and ModelOpt wildcard matching.

The ModelOpt exclude_modules list is a list of wildcards.

Source code in vllm/model_executor/layers/quantization/modelopt.py
def is_layer_excluded(self, prefix: str) -> bool:
    """
    Check if a layer should be excluded from quantization.

    Handles both exact matching (for fused layers) and ModelOpt wildcard matching.

    The ModelOpt exclude_modules list is a list of wildcards.
    """
    if len(self.exclude_modules) == 0:
        return False

    # First check exact matching with fused layer support
    if is_layer_skipped(prefix, self.exclude_modules, self.packed_modules_mapping):
        return True

    # TODO: This special hard coded logic is not needed for quantized checkpoints
    # generated by ModelOpt >= 0.39.0 where they are handled natually by the
    # exclude_modules config. But need to keep them for loading quantized
    # checkpoints generated by older versions. Then check substring matching
    # for patterns not caught by exact match
    for exclude_module in self.exclude_modules:
        # Skip exact matches already handled above
        if exclude_module != prefix and (
            exclude_module in prefix
            or (
                prefix.startswith("language_model.")
                and exclude_module in prefix.removeprefix("language_model.")
            )
        ):
            return True

    # modelopt exclude modules are not simple strings, they are wildcards
    for wildcard_pattern in self.exclude_modules:
        if fnmatch(prefix, wildcard_pattern):
            return True

    return False