vllm.model_executor.models.roberta ¶
RobertaClassificationHead ¶
Bases: Module
Head for sentence-level classification tasks.
Source code in vllm/model_executor/models/roberta.py
__init__ ¶
__init__(model_config: ModelConfig)
Source code in vllm/model_executor/models/roberta.py
RobertaEmbedding ¶
Bases: Module
Source code in vllm/model_executor/models/roberta.py
position_embeddings instance-attribute ¶
position_embeddings = Embedding(
max_position_embeddings,
hidden_size,
padding_idx=padding_idx,
)
token_type_embeddings instance-attribute ¶
token_type_embeddings = Embedding(
type_vocab_size, hidden_size
)
word_embeddings instance-attribute ¶
word_embeddings = VocabParallelEmbedding(
vocab_size, hidden_size
)
__init__ ¶
Source code in vllm/model_executor/models/roberta.py
forward ¶
Source code in vllm/model_executor/models/roberta.py
RobertaEmbeddingModel ¶
Bases: BertEmbeddingModel
A model that uses Roberta to provide embedding functionalities.
Source code in vllm/model_executor/models/roberta.py
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
_build_model ¶
_build_model(
vllm_config: VllmConfig, prefix: str = ""
) -> BertModel | BertWithRope
Source code in vllm/model_executor/models/roberta.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/roberta.py
load_weights ¶
Source code in vllm/model_executor/models/roberta.py
RobertaForSequenceClassification ¶
Bases: Module, SupportsCrossEncoding
A model that uses Roberta to provide embedding functionalities.
This class encapsulates the BertModel and provides an interface for embedding operations and customized pooling functions.
Attributes:
| Name | Type | Description |
|---|---|---|
roberta | An instance of BertModel used for forward operations. | |
_pooler | An instance of Pooler used for pooling operations. |
Source code in vllm/model_executor/models/roberta.py
jina_to_vllm_mapper class-attribute instance-attribute ¶
jina_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"layers": "layer",
"mixer.Wqkv": "attention.self.qkv_proj",
"mixer.out_proj": "attention.output.dense",
"norm1": "attention.output.LayerNorm",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm2": "output.LayerNorm",
}
)
roberta instance-attribute ¶
roberta = BertModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "bert"),
embedding_class=RobertaEmbedding,
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/roberta.py
embed_input_ids ¶
forward ¶
forward(
input_ids: Tensor | None,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: Tensor | None = None,
token_type_ids: Tensor | None = None,
) -> Tensor