vllm.multimodal.parse ¶
ModalityDataParser module-attribute ¶
ModalityDataParser: TypeAlias = Callable[
[ModalityData[Any]], ModalityDataItems[Any, Any] | None
]
AudioEmbeddingItems ¶
AudioProcessorItems ¶
Bases: ProcessorBatchItems[HfAudioItem]
Source code in vllm/multimodal/parse.py
__init__ ¶
__init__(data: Sequence[HfAudioItem] | None) -> None
DictEmbeddingItems ¶
Bases: ModalityDataItems[Mapping[str, Tensor], Mapping[str, Tensor]]
Base class for data items that are expressed as a dictionary of tensors.
Usually, the dictionary keys correspond to the outputs of HF processor.
Source code in vllm/multimodal/parse.py
__init__ ¶
__init__(
data: Mapping[str, Tensor],
modality: str,
required_fields: set[str],
fields_factory: Callable[
[Mapping[str, Tensor]],
Mapping[str, MultiModalFieldConfig],
],
) -> None
Source code in vllm/multimodal/parse.py
get ¶
get_passthrough_data ¶
EmbeddingItems ¶
Bases: ModalityDataItems[Tensor | list[Tensor], Tensor]
Base class for data items that are expressed as a batched embedding tensor, or a list of embedding tensors (one per item).
Source code in vllm/multimodal/parse.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | |
__init__ ¶
__init__(
data: Tensor | list[Tensor],
modality: str,
expected_hidden_size: int | None = None,
) -> None
Source code in vllm/multimodal/parse.py
_unwrap ¶
_unwrap(item: Tensor | MediaWithBytes[Tensor]) -> Tensor
_validate_hidden_size ¶
_validate_hidden_size(expected_hidden_size: int) -> None
Validate that embedding hidden dimension matches expected size.
This validates hidden dimensions to prevent vulnerabilities: Embeddings with correct ndim but wrong hidden dimension could bypass initial checks and cause crashes during model inference when dimensions don't match.
Source code in vllm/multimodal/parse.py
_validate_ndim ¶
Validate that embedding tensors have correct ndim (2D or 3D).
Source code in vllm/multimodal/parse.py
get ¶
get_feature_size ¶
get_passthrough_data ¶
ImageEmbeddingItems ¶
ImageProcessorItems ¶
Bases: ProcessorBatchItems[HfImageItem]
Source code in vllm/multimodal/parse.py
__init__ ¶
__init__(data: Sequence[HfImageItem] | None) -> None
get_image_size ¶
Source code in vllm/multimodal/parse.py
ImageSize ¶
ModalityDataItems ¶
Represents data items for a modality in MultiModalDataItems.
Source code in vllm/multimodal/parse.py
__getitem__ ¶
__init__ ¶
__iter__ ¶
Source code in vllm/multimodal/parse.py
get abstractmethod ¶
get_all ¶
get_all_items_for_hash ¶
get_item_for_hash ¶
get_passthrough_data abstractmethod ¶
get_processor_data abstractmethod ¶
MultiModalDataItems ¶
Bases: UserDict[str, ModalityDataItems[Any, Any]]
As MultiModalDataDict, but normalized such that each entry corresponds to a list.
Source code in vllm/multimodal/parse.py
get_all_counts ¶
get_count ¶
Get the number of data items belonging to a modality.
If strict=False, return 0 instead of raising KeyError even if the modality is not found.
Source code in vllm/multimodal/parse.py
get_items ¶
Get the data items belonging to a modality, requiring that they belong to a certain type.
Source code in vllm/multimodal/parse.py
MultiModalDataParser ¶
Parses MultiModalDataDict into MultiModalDataItems.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target_sr | float | Enables automatic resampling of audio items to the model's expected sampling rate. | None |
target_channels | int | Target number of audio channels. If provided, normalizes audio to this many channels (e.g., 1 for mono). If None, audio channels are passed through unchanged. | None |
expected_hidden_size | int | Expected hidden dimension for embedding inputs. If provided, validates that user-supplied embeddings have the correct hidden size to prevent crashes during model inference. | None |
Source code in vllm/multimodal/parse.py
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 | |
audio_resampler instance-attribute ¶
audio_resampler = AudioResampler(
target_sr=target_sr, method=audio_resample_method
)
__init__ ¶
__init__(
*,
target_sr: float | None = None,
target_channels: int | None = None,
audio_resample_method: Literal[
"librosa", "scipy"
] = "librosa",
video_needs_metadata: bool = False,
expected_hidden_size: int | None = None,
) -> None
Source code in vllm/multimodal/parse.py
_get_audio_with_sr ¶
Source code in vllm/multimodal/parse.py
_get_subparsers ¶
_get_subparsers() -> Mapping[str, ModalityDataParser]
_get_video_with_metadata ¶
Source code in vllm/multimodal/parse.py
_is_empty ¶
_parse_audio_data ¶
_parse_audio_data(
data: ModalityData[AudioItem],
) -> ModalityDataItems[Any, Any] | None
Source code in vllm/multimodal/parse.py
_parse_image_data ¶
_parse_image_data(
data: ModalityData[ImageItem],
) -> ModalityDataItems[Any, Any] | None
Source code in vllm/multimodal/parse.py
_parse_video_data ¶
_parse_video_data(
data: ModalityData[VideoItem],
) -> ModalityDataItems[Any, Any] | None
Source code in vllm/multimodal/parse.py
is_embeddings classmethod ¶
Source code in vllm/multimodal/parse.py
parse_mm_data ¶
parse_mm_data(
mm_data: MultiModalDataDict,
) -> MultiModalDataItems
Source code in vllm/multimodal/parse.py
ProcessorBatchItems ¶
Bases: ModalityDataItems[Sequence[_T], _T]
Base class for data items that are arranged in a list.
Source code in vllm/multimodal/parse.py
VideoEmbeddingItems ¶
VideoProcessorItems ¶
Bases: ProcessorBatchItems[HfVideoItem]
Source code in vllm/multimodal/parse.py
__init__ ¶
get_frame_size ¶
Source code in vllm/multimodal/parse.py
validate_embedding_ndim ¶
Validate tensor ndim for multimodal embeddings.
Single embeddings should be 2D (seq_len, hidden_size). Batched embeddings should be 3D (batch, seq_len, hidden_size).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tensor | Tensor | The tensor to validate. | required |
modality | str | The modality name for error messages (e.g., "image", "audio"). | required |
index | int | None | Optional index for list items, included in error messages. | None |