Skip to content

vllm.v1.attention.backends.flashinfer

Attention layer with FlashInfer.

FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT module-attribute

FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT = (
    2048 * 1024 * 1024
)

FP4_DTYPE module-attribute

FP4_DTYPE = uint8

FP8_DTYPE module-attribute

FP8_DTYPE = fp8_dtype()

logger module-attribute

logger = init_logger(__name__)

trtllm_gen_workspace_buffer module-attribute

trtllm_gen_workspace_buffer = None

BatchDCPPrefillWrapper

Source code in vllm/v1/attention/backends/flashinfer.py
class BatchDCPPrefillWrapper:
    def __init__(
        self,
        workspace_buffer: torch.Tensor | None = None,
    ):
        self._context = BatchPrefillWithPagedKVCacheWrapper(
            workspace_buffer, get_kv_cache_layout()
        )
        self._new_tokens = BatchPrefillWithRaggedKVCacheWrapper(
            workspace_buffer, get_kv_cache_layout()
        )

    def plan(
        self,
        qo_indptr_cpu: torch.Tensor,
        paged_kv_indptr_cpu: torch.Tensor,
        paged_kv_indices: torch.Tensor,
        paged_kv_last_page_len_cpu: torch.Tensor,
        page_size: int,
        num_qo_heads: int,
        dcp_world_size: int,
        num_kv_heads: int,
        head_dim: int,
        sm_scale: float,
        window_left: int,
        logits_soft_cap: float | None,
        q_data_type: torch.dtype,
        kv_cache_dtype: torch.dtype,
        prefill_fixed_split_size: int,
        disable_split_kv: bool,
    ):
        """Plan the prefill operation with given parameters."""
        self._context.plan(
            qo_indptr_cpu,
            paged_kv_indptr_cpu,
            paged_kv_indices,
            paged_kv_last_page_len_cpu,
            num_qo_heads * dcp_world_size,
            num_kv_heads,
            head_dim,
            page_size,
            causal=False,  # This is context run
            sm_scale=sm_scale,
            window_left=window_left,
            logits_soft_cap=logits_soft_cap,
            q_data_type=q_data_type,
            kv_data_type=kv_cache_dtype,
            fixed_split_size=prefill_fixed_split_size,
            disable_split_kv=disable_split_kv,
        )
        self._new_tokens.plan(
            qo_indptr=qo_indptr_cpu,
            kv_indptr=qo_indptr_cpu,
            num_qo_heads=num_qo_heads,
            num_kv_heads=num_kv_heads,
            head_dim_qk=head_dim,
            head_dim_vo=head_dim,
            causal=True,  # This is newtokens run
            sm_scale=sm_scale,
            window_left=window_left,
            logits_soft_cap=logits_soft_cap,
            q_data_type=q_data_type,
        )

    def run(
        self,
        layer: torch.nn.Module,
        prefill_query: torch.Tensor,
        kv_cache_permute: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        out: torch.Tensor,
    ):
        prefill_query_across_dcp = get_dcp_group().all_gather(
            prefill_query.contiguous(), dim=1
        )
        output_context_tmp, lse_context_tmp = self._context.run(
            prefill_query_across_dcp,
            kv_cache_permute,
            k_scale=layer._k_scale_float,
            v_scale=layer._v_scale_float,
            return_lse=True,
        )
        output_context, lse_context = cp_lse_ag_out_rs(
            output_context_tmp,
            lse_context_tmp,
            get_dcp_group(),
            return_lse=True,
            is_lse_base_on_e=False,
        )
        lse_context = lse_context.transpose(0, 1).contiguous()

        output_query, lse_query = self._new_tokens.run(
            prefill_query,
            key,
            value,
            return_lse=True,
        )
        lse_query = lse_query.transpose(0, 1).contiguous()

        merge_attn_states(
            out,
            output_context,
            lse_context,
            output_query,
            lse_query,
        )
        return out

_context instance-attribute

_context = BatchPrefillWithPagedKVCacheWrapper(
    workspace_buffer, get_kv_cache_layout()
)

_new_tokens instance-attribute

_new_tokens = BatchPrefillWithRaggedKVCacheWrapper(
    workspace_buffer, get_kv_cache_layout()
)

__init__

__init__(workspace_buffer: Tensor | None = None)
Source code in vllm/v1/attention/backends/flashinfer.py
def __init__(
    self,
    workspace_buffer: torch.Tensor | None = None,
):
    self._context = BatchPrefillWithPagedKVCacheWrapper(
        workspace_buffer, get_kv_cache_layout()
    )
    self._new_tokens = BatchPrefillWithRaggedKVCacheWrapper(
        workspace_buffer, get_kv_cache_layout()
    )

plan

plan(
    qo_indptr_cpu: Tensor,
    paged_kv_indptr_cpu: Tensor,
    paged_kv_indices: Tensor,
    paged_kv_last_page_len_cpu: Tensor,
    page_size: int,
    num_qo_heads: int,
    dcp_world_size: int,
    num_kv_heads: int,
    head_dim: int,
    sm_scale: float,
    window_left: int,
    logits_soft_cap: float | None,
    q_data_type: dtype,
    kv_cache_dtype: dtype,
    prefill_fixed_split_size: int,
    disable_split_kv: bool,
)

Plan the prefill operation with given parameters.

Source code in vllm/v1/attention/backends/flashinfer.py
def plan(
    self,
    qo_indptr_cpu: torch.Tensor,
    paged_kv_indptr_cpu: torch.Tensor,
    paged_kv_indices: torch.Tensor,
    paged_kv_last_page_len_cpu: torch.Tensor,
    page_size: int,
    num_qo_heads: int,
    dcp_world_size: int,
    num_kv_heads: int,
    head_dim: int,
    sm_scale: float,
    window_left: int,
    logits_soft_cap: float | None,
    q_data_type: torch.dtype,
    kv_cache_dtype: torch.dtype,
    prefill_fixed_split_size: int,
    disable_split_kv: bool,
):
    """Plan the prefill operation with given parameters."""
    self._context.plan(
        qo_indptr_cpu,
        paged_kv_indptr_cpu,
        paged_kv_indices,
        paged_kv_last_page_len_cpu,
        num_qo_heads * dcp_world_size,
        num_kv_heads,
        head_dim,
        page_size,
        causal=False,  # This is context run
        sm_scale=sm_scale,
        window_left=window_left,
        logits_soft_cap=logits_soft_cap,
        q_data_type=q_data_type,
        kv_data_type=kv_cache_dtype,
        fixed_split_size=prefill_fixed_split_size,
        disable_split_kv=disable_split_kv,
    )
    self._new_tokens.plan(
        qo_indptr=qo_indptr_cpu,
        kv_indptr=qo_indptr_cpu,
        num_qo_heads=num_qo_heads,
        num_kv_heads=num_kv_heads,
        head_dim_qk=head_dim,
        head_dim_vo=head_dim,
        causal=True,  # This is newtokens run
        sm_scale=sm_scale,
        window_left=window_left,
        logits_soft_cap=logits_soft_cap,
        q_data_type=q_data_type,
    )

run

run(
    layer: Module,
    prefill_query: Tensor,
    kv_cache_permute: Tensor,
    key: Tensor,
    value: Tensor,
    out: Tensor,
)
Source code in vllm/v1/attention/backends/flashinfer.py
def run(
    self,
    layer: torch.nn.Module,
    prefill_query: torch.Tensor,
    kv_cache_permute: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    out: torch.Tensor,
):
    prefill_query_across_dcp = get_dcp_group().all_gather(
        prefill_query.contiguous(), dim=1
    )
    output_context_tmp, lse_context_tmp = self._context.run(
        prefill_query_across_dcp,
        kv_cache_permute,
        k_scale=layer._k_scale_float,
        v_scale=layer._v_scale_float,
        return_lse=True,
    )
    output_context, lse_context = cp_lse_ag_out_rs(
        output_context_tmp,
        lse_context_tmp,
        get_dcp_group(),
        return_lse=True,
        is_lse_base_on_e=False,
    )
    lse_context = lse_context.transpose(0, 1).contiguous()

    output_query, lse_query = self._new_tokens.run(
        prefill_query,
        key,
        value,
        return_lse=True,
    )
    lse_query = lse_query.transpose(0, 1).contiguous()

    merge_attn_states(
        out,
        output_context,
        lse_context,
        output_query,
        lse_query,
    )
    return out

FIDecode dataclass

Metadata for the native FlashInfer decode pathway (non-TRTLLM).

Source code in vllm/v1/attention/backends/flashinfer.py
@dataclass
class FIDecode:
    """Metadata for the native FlashInfer decode pathway (non-TRTLLM)."""

    wrapper: BatchDecodeWithPagedKVCacheWrapper

wrapper instance-attribute

wrapper: BatchDecodeWithPagedKVCacheWrapper

__init__

__init__(
    wrapper: BatchDecodeWithPagedKVCacheWrapper,
) -> None

FIPrefill dataclass

Metadata for the native FlashInfer prefill pathway (non-TRTLLM).

Source code in vllm/v1/attention/backends/flashinfer.py
@dataclass
class FIPrefill:
    """Metadata for the native FlashInfer prefill pathway (non-TRTLLM)."""

    wrapper: BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper

wrapper instance-attribute

wrapper: (
    BatchPrefillWithPagedKVCacheWrapper
    | BatchDCPPrefillWrapper
)

__init__

__init__(
    wrapper: BatchPrefillWithPagedKVCacheWrapper
    | BatchDCPPrefillWrapper,
) -> None

FlashInferBackend

Bases: AttentionBackend

Source code in vllm/v1/attention/backends/flashinfer.py
class FlashInferBackend(AttentionBackend):
    accept_output_buffer: bool = True
    supported_dtypes: ClassVar[list[torch.dtype]] = [torch.float16, torch.bfloat16]
    supported_kv_cache_dtypes: ClassVar[list[CacheDType]] = [
        "auto",
        "fp8",
        "fp8_e4m3",
        "fp8_e5m2",
    ]

    @staticmethod
    def get_supported_kernel_block_sizes() -> list[int | MultipleOf]:
        # Note: Not sure for all platforms, but on Blackwell,
        # only support a page size of 16, 32, 64.
        return [16, 32, 64]

    @staticmethod
    def get_name() -> str:
        return "FLASHINFER"

    @staticmethod
    def get_impl_cls() -> type["FlashInferImpl"]:
        return FlashInferImpl

    @staticmethod
    def get_builder_cls() -> type["FlashInferMetadataBuilder"]:
        return FlashInferMetadataBuilder

    @staticmethod
    def get_kv_cache_shape(
        num_blocks: int,
        block_size: int,
        num_kv_heads: int,
        head_size: int,
        cache_dtype_str: str = "auto",
    ) -> tuple[int, ...]:
        return (num_blocks, 2, block_size, num_kv_heads, head_size)

    @staticmethod
    def get_kv_cache_stride_order(
        include_num_layers_dimension: bool = False,
    ) -> tuple[int, ...]:
        # `stride_order` indicates the permutation that gets us from
        # `get_kv_cache_shape` to the actual memory layout we want.
        cache_layout = get_kv_cache_layout()
        if cache_layout == "NHD" and include_num_layers_dimension:
            # (num_blocks, num_layers, 2, block_size, num_kv_heads, head_size)
            return (1, 0, 2, 3, 4, 5)
        elif cache_layout == "NHD":
            stride_order = (0, 1, 2, 3, 4)
        elif cache_layout == "HND" and include_num_layers_dimension:
            # (num_blocks, 2, num_kv_heads, num_layers, block_size, head_size)
            return (1, 2, 4, 0, 3, 5)
        elif cache_layout == "HND":
            stride_order = (0, 1, 3, 2, 4)
        else:
            raise ValueError(f"Unknown cache layout format {cache_layout}.")
        return stride_order

    @staticmethod
    def get_fp8_dtype_for_flashinfer(kv_cache_dtype: str) -> torch.dtype:
        if kv_cache_dtype in ("fp8", "fp8_e4m3"):
            return torch.float8_e4m3fn
        elif kv_cache_dtype == "fp8_e5m2":
            return torch.float8_e5m2
        else:
            raise ValueError(f"Unrecognized FP8 dtype: {kv_cache_dtype}")

    @classmethod
    def get_supported_head_sizes(cls) -> list[int]:
        # https://github.com/flashinfer-ai/flashinfer/blob/3d55c71a62052c590c130897d3a3db49b14fcc34/include/flashinfer/utils.cuh#L157
        return [64, 128, 256]

    @classmethod
    def supports_compute_capability(cls, capability: DeviceCapability) -> bool:
        return capability >= DeviceCapability(7, 5) and capability <= DeviceCapability(
            12, 1
        )

    @classmethod
    def supports_sink(cls) -> bool:
        """FlashInfer supports sinks when TRTLLM attention is available (SM100)."""
        from vllm.utils.flashinfer import (
            force_use_trtllm_attention,
            supports_trtllm_attention,
        )

        # Respect explicit disable flag (e.g.,
        # --attention-config.use_trtllm_attention=0)
        if force_use_trtllm_attention() is False:
            return False

        # Check if TRTLLM is supported on this platform
        return supports_trtllm_attention()

    @classmethod
    def get_required_kv_cache_layout(cls) -> KVCacheLayoutType | None:
        from vllm.platforms import current_platform

        capability = current_platform.get_device_capability()
        if capability is not None and capability.major == 10:
            return "HND"
        return None

accept_output_buffer class-attribute instance-attribute

accept_output_buffer: bool = True

supported_dtypes class-attribute

supported_dtypes: list[dtype] = [float16, bfloat16]

supported_kv_cache_dtypes class-attribute

supported_kv_cache_dtypes: list[CacheDType] = [
    "auto",
    "fp8",
    "fp8_e4m3",
    "fp8_e5m2",
]

get_builder_cls staticmethod

get_builder_cls() -> type[FlashInferMetadataBuilder]
Source code in vllm/v1/attention/backends/flashinfer.py
@staticmethod
def get_builder_cls() -> type["FlashInferMetadataBuilder"]:
    return FlashInferMetadataBuilder

get_fp8_dtype_for_flashinfer staticmethod

get_fp8_dtype_for_flashinfer(kv_cache_dtype: str) -> dtype
Source code in vllm/v1/attention/backends/flashinfer.py
@staticmethod
def get_fp8_dtype_for_flashinfer(kv_cache_dtype: str) -> torch.dtype:
    if kv_cache_dtype in ("fp8", "fp8_e4m3"):
        return torch.float8_e4m3fn
    elif kv_cache_dtype == "fp8_e5m2":
        return torch.float8_e5m2
    else:
        raise ValueError(f"Unrecognized FP8 dtype: {kv_cache_dtype}")

get_impl_cls staticmethod

get_impl_cls() -> type[FlashInferImpl]
Source code in vllm/v1/attention/backends/flashinfer.py
@staticmethod
def get_impl_cls() -> type["FlashInferImpl"]:
    return FlashInferImpl

get_kv_cache_shape staticmethod

get_kv_cache_shape(
    num_blocks: int,
    block_size: int,
    num_kv_heads: int,
    head_size: int,
    cache_dtype_str: str = "auto",
) -> tuple[int, ...]
Source code in vllm/v1/attention/backends/flashinfer.py
@staticmethod
def get_kv_cache_shape(
    num_blocks: int,
    block_size: int,
    num_kv_heads: int,
    head_size: int,
    cache_dtype_str: str = "auto",
) -> tuple[int, ...]:
    return (num_blocks, 2, block_size, num_kv_heads, head_size)

get_kv_cache_stride_order staticmethod

get_kv_cache_stride_order(
    include_num_layers_dimension: bool = False,
) -> tuple[int, ...]
Source code in vllm/v1/attention/backends/flashinfer.py
@staticmethod
def get_kv_cache_stride_order(
    include_num_layers_dimension: bool = False,
) -> tuple[int, ...]:
    # `stride_order` indicates the permutation that gets us from
    # `get_kv_cache_shape` to the actual memory layout we want.
    cache_layout = get_kv_cache_layout()
    if cache_layout == "NHD" and include_num_layers_dimension:
        # (num_blocks, num_layers, 2, block_size, num_kv_heads, head_size)
        return (1, 0, 2, 3, 4, 5)
    elif cache_layout == "NHD":
        stride_order = (0, 1, 2, 3, 4)
    elif cache_layout == "HND" and include_num_layers_dimension:
        # (num_blocks, 2, num_kv_heads, num_layers, block_size, head_size)
        return (1, 2, 4, 0, 3, 5)
    elif cache_layout == "HND":
        stride_order = (0, 1, 3, 2, 4)
    else:
        raise ValueError(f"Unknown cache layout format {cache_layout}.")
    return stride_order

get_name staticmethod

get_name() -> str
Source code in vllm/v1/attention/backends/flashinfer.py
@staticmethod
def get_name() -> str:
    return "FLASHINFER"

get_required_kv_cache_layout classmethod

get_required_kv_cache_layout() -> KVCacheLayoutType | None
Source code in vllm/v1/attention/backends/flashinfer.py
@classmethod
def get_required_kv_cache_layout(cls) -> KVCacheLayoutType | None:
    from vllm.platforms import current_platform

    capability = current_platform.get_device_capability()
    if capability is not None and capability.major == 10:
        return "HND"
    return None

get_supported_head_sizes classmethod

get_supported_head_sizes() -> list[int]
Source code in vllm/v1/attention/backends/flashinfer.py
@classmethod
def get_supported_head_sizes(cls) -> list[int]:
    # https://github.com/flashinfer-ai/flashinfer/blob/3d55c71a62052c590c130897d3a3db49b14fcc34/include/flashinfer/utils.cuh#L157
    return [64, 128, 256]

get_supported_kernel_block_sizes staticmethod

get_supported_kernel_block_sizes() -> list[
    int | MultipleOf
]
Source code in vllm/v1/attention/backends/flashinfer.py
@staticmethod
def get_supported_kernel_block_sizes() -> list[int | MultipleOf]:
    # Note: Not sure for all platforms, but on Blackwell,
    # only support a page size of 16, 32, 64.
    return [16, 32, 64]

supports_compute_capability classmethod

supports_compute_capability(
    capability: DeviceCapability,
) -> bool
Source code in vllm/v1/attention/backends/flashinfer.py
@classmethod
def supports_compute_capability(cls, capability: DeviceCapability) -> bool:
    return capability >= DeviceCapability(7, 5) and capability <= DeviceCapability(
        12, 1
    )

supports_sink classmethod

supports_sink() -> bool

FlashInfer supports sinks when TRTLLM attention is available (SM100).

Source code in vllm/v1/attention/backends/flashinfer.py
@classmethod
def supports_sink(cls) -> bool:
    """FlashInfer supports sinks when TRTLLM attention is available (SM100)."""
    from vllm.utils.flashinfer import (
        force_use_trtllm_attention,
        supports_trtllm_attention,
    )

    # Respect explicit disable flag (e.g.,
    # --attention-config.use_trtllm_attention=0)
    if force_use_trtllm_attention() is False:
        return False

    # Check if TRTLLM is supported on this platform
    return supports_trtllm_attention()

FlashInferImpl

Bases: AttentionImpl

Source code in vllm/v1/attention/backends/flashinfer.py
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
class FlashInferImpl(AttentionImpl):
    can_return_lse_for_decode: bool = True

    def __init__(
        self,
        num_heads: int,
        head_size: int,
        scale: float,
        num_kv_heads: int,
        alibi_slopes: list[float] | None,
        sliding_window: int | None,
        kv_cache_dtype: str,
        logits_soft_cap: float | None = None,
        attn_type: AttentionType = AttentionType.DECODER,
        kv_sharing_target_layer_name: int | None = None,
        sinks: torch.Tensor | None = None,
    ) -> None:
        self.num_heads = num_heads
        self.head_size = head_size
        self.scale = float(scale)
        self.num_kv_heads = num_kv_heads
        if alibi_slopes is not None:
            alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
        self.alibi_slopes = alibi_slopes
        if sliding_window is None:
            self.sliding_window = (-1, -1)
        else:
            self.sliding_window = (sliding_window - 1, 0)
        self.window_left = (
            self.sliding_window[0] if self.sliding_window is not None else -1
        )
        self.kv_cache_dtype = kv_cache_dtype
        self.logits_soft_cap = logits_soft_cap
        self.kv_sharing_target_layer_name = kv_sharing_target_layer_name

        self.num_queries_per_kv = self.num_heads // self.num_kv_heads

        if attn_type != AttentionType.DECODER:
            raise NotImplementedError(
                "Encoder self-attention and "
                "encoder/decoder cross-attention "
                "are not implemented for "
                "FlashInferImpl"
            )

        self.sinks: torch.Tensor | None = None
        if sinks is not None:
            if sinks.shape[0] != num_heads:
                raise ValueError(
                    "Sinks must have the same number of heads as the number of "
                    f"heads in the layer. Expected {num_heads}, but got "
                    f"{sinks.shape[0]}."
                )
            self.sinks = sinks

        self.support_trtllm_attn = can_use_trtllm_attention(num_heads, num_kv_heads)
        vllm_config = get_current_vllm_config()
        self.supports_quant_query_input = (
            self.support_trtllm_attn
            and not vllm_config.attention_config.disable_flashinfer_q_quantization
        )
        self.bmm1_scale: float | None = None
        self.bmm2_scale: float | None = None
        self.o_sf_scale: float | None = None

    def fused_output_quant_supported(self, quant_key: QuantKey):
        return (
            self.support_trtllm_attn
            and self.kv_cache_dtype.startswith("fp8")
            and quant_key in (kFp8StaticTensorSym, kNvfp4Quant)
        )

    # FlashInfer requires attention sinks to be float32
    def process_weights_after_loading(self, act_dtype: torch.dtype):
        if self.sinks is not None and self.sinks.dtype != torch.float32:
            self.sinks = self.sinks.to(torch.float32)

    def forward(
        self,
        layer: torch.nn.Module,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: FlashInferMetadata,
        output: torch.Tensor | None = None,
        output_scale: torch.Tensor | None = None,
        output_block_scale: torch.Tensor | None = None,
    ) -> torch.Tensor:
        """Forward pass with FlashInfer.

        Args:
            query: shape = [num_tokens, num_heads, head_size]
            key: shape = [num_tokens, num_kv_heads, head_size]
            value: shape = [num_tokens, num_kv_heads, head_size]
            kv_cache: KV cache tensor with different possible shapes:
                - NHD: [num_blocks, 2, block_size, num_kv_heads, head_size]
                - HND: [num_blocks, 2, num_kv_heads, block_size, head_size]
            attn_metadata: Metadata for attention.
        Returns:
            shape = [num_tokens, num_heads * head_size]
        """
        assert output is not None, "Output tensor must be provided."

        if attn_metadata is None:
            # Profiling run.
            return output.fill_(0)

        # Ensure query dtype matches the expected dtype from attention metadata
        assert attn_metadata.q_data_type == query.dtype, (
            f"Query dtype mismatch: expected {attn_metadata.q_data_type}, "
            f"got {query.dtype}"
        )

        if self.bmm1_scale is None:
            self.bmm1_scale = layer._q_scale_float * layer._k_scale_float * self.scale

        if self.bmm2_scale is None:
            self.bmm2_scale = layer._v_scale_float

        prefill_use_trtllm = isinstance(attn_metadata.prefill, TRTLLMPrefill)
        decode_use_trtllm = isinstance(attn_metadata.decode, TRTLLMDecode)

        # The attn+quant fusion happens when output_scale is provided.
        if output_scale is None:
            assert output_block_scale is None, (
                "output_block_scale is not supported when fusion has not happened"
            )
        else:
            assert attn_metadata.q_data_type == FP8_DTYPE, (
                "Query must be FP8 when attn+quant fusion happened."
            )
            assert (attn_metadata.num_prefills == 0 or prefill_use_trtllm) and (
                attn_metadata.num_decodes == 0 or decode_use_trtllm
            ), "Must use TRT-LLM attn"

            if output.dtype == FP8_DTYPE:
                assert output_block_scale is None, (
                    "output_block_scale should not be provided for fp8 output"
                )
            elif output.dtype == FP4_DTYPE:
                assert output_block_scale is not None, (
                    "output_block_scale is required for nvfp4 output"
                )
            else:
                raise ValueError(f"Unsupported output dtype: {output.dtype}")

            # TRTLLM attn kernel requires to scale to pass as a host scalar,
            # store the o scale as a host scalar in warmup run with cuda graph
            # not enabled
            if layer._o_scale_float is None:
                layer._o_scale_float = output_scale.cpu().item()
                if output.dtype == FP8_DTYPE:
                    self.bmm2_scale = self.bmm2_scale / layer._o_scale_float
                elif output.dtype == FP4_DTYPE:
                    self.o_sf_scale = layer._o_scale_float

        # IMPORTANT!
        # NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
        # eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
        # in this method. For example, `view` and `slice` (or `[:n]`) operations
        # are surprisingly slow even in the case they do not invoke any GPU ops.
        # Minimize the PyTorch ops in this method as much as possible.
        # Whenever making a change in this method, please benchmark the
        # performance to make sure it does not introduce any overhead.

        num_actual_tokens = attn_metadata.num_actual_tokens

        if self.kv_sharing_target_layer_name is None:
            # Reshape the input keys and values and store them in the cache.
            # Skip this if sharing KV cache with an earlier attention layer.
            # NOTE(woosuk): Here, key and value are padded while slot_mapping is
            # not padded. However, we don't need to do key[:num_actual_tokens]
            # and value[:num_actual_tokens] because the reshape_and_cache_flash
            # op uses the slot_mapping's shape to determine the number of
            # actual tokens.
            torch.ops._C_cache_ops.reshape_and_cache_flash(
                key,
                value,
                kv_cache[:, 0],
                kv_cache[:, 1],
                attn_metadata.slot_mapping,
                self.kv_cache_dtype,
                layer._k_scale,
                layer._v_scale,
            )

            # The FlashInfer api requires data to be in fp8_e4m3 or fp8_e5m2
            # to process the cache when the kv_cache_dtype is fp8
            if self.kv_cache_dtype.startswith("fp8"):
                torch_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
                    self.kv_cache_dtype
                )
                kv_cache = kv_cache.view(torch_dtype)

        # Inputs and outputs may be padded for CUDA graphs
        query = query[:num_actual_tokens]
        key = key[:num_actual_tokens]
        value = value[:num_actual_tokens]
        output_padded = output
        output = output[:num_actual_tokens]

        if attn_metadata.use_cascade:
            # Cascade attention (rare case).
            assert attn_metadata.cascade_wrapper is not None
            output.copy_(attn_metadata.cascade_wrapper.run(query, kv_cache))
            return output

        # When using spec decoding, num_decodes can be < num_decode_tokens
        # because some decode requests may have more than one query token.
        num_decode_tokens = attn_metadata.num_decode_tokens
        num_prefill_tokens = attn_metadata.num_prefill_tokens

        stride_order = FlashInferBackend.get_kv_cache_stride_order()
        kv_cache_permute = kv_cache.permute(*stride_order)

        use_dcp = self.dcp_world_size > 1

        # Regular attention (common case).
        # Decodes are at the front and prefills are at the back.
        if num_prefill_tokens > 0:
            prefill_query = query[num_decode_tokens:]
            assert prefill_query.shape[0] == num_prefill_tokens

            if not prefill_use_trtllm:
                assert isinstance(attn_metadata.prefill, FIPrefill)
                prefill_wrapper = attn_metadata.prefill.wrapper
                assert prefill_wrapper is not None
                if use_dcp:
                    assert isinstance(prefill_wrapper, BatchDCPPrefillWrapper)
                    assert prefill_wrapper._context._window_left == self.window_left
                    assert prefill_wrapper._context._logits_soft_cap == (
                        self.logits_soft_cap or 0.0
                    )
                    assert prefill_wrapper._context._sm_scale == self.scale
                    assert not prefill_wrapper._context._causal
                    assert prefill_wrapper._new_tokens._window_left == self.window_left
                    assert prefill_wrapper._new_tokens._logits_soft_cap == (
                        self.logits_soft_cap or 0.0
                    )
                    assert prefill_wrapper._new_tokens._sm_scale == self.scale
                    assert prefill_wrapper._new_tokens._causal

                    prefill_wrapper.run(
                        layer,
                        prefill_query,
                        kv_cache_permute,
                        key[num_decode_tokens:],
                        value[num_decode_tokens:],
                        out=output[num_decode_tokens:],
                    )
                else:
                    assert isinstance(
                        prefill_wrapper, BatchPrefillWithPagedKVCacheWrapper
                    )
                    assert prefill_wrapper._window_left == self.window_left
                    assert prefill_wrapper._logits_soft_cap == (
                        self.logits_soft_cap or 0.0
                    )
                    assert prefill_wrapper._sm_scale == self.scale
                    assert prefill_wrapper._causal
                    prefill_wrapper.run(
                        prefill_query,
                        kv_cache_permute,
                        k_scale=layer._k_scale_float,
                        v_scale=layer._v_scale_float,
                        out=output[num_decode_tokens:],
                    )
            else:
                assert isinstance(attn_metadata.prefill, TRTLLMPrefill)
                # prefill_query may be non-contiguous
                prefill_query = prefill_query.contiguous()
                workspace_buffer = _get_trtllm_gen_workspace_buffer()
                block_tables_prefill = attn_metadata.prefill.block_tables
                seq_lens_prefill = attn_metadata.prefill.seq_lens

                # This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
                assert get_kv_cache_layout() == "HND"
                assert is_strictly_contiguous(prefill_query)
                assert is_strictly_contiguous(kv_cache_permute)
                assert is_strictly_contiguous(workspace_buffer)
                assert is_strictly_contiguous(block_tables_prefill)
                assert is_strictly_contiguous(seq_lens_prefill)

                if output.dtype == FP4_DTYPE:
                    assert self.o_sf_scale is not None
                    out = FP4Tensor(
                        data=output[num_decode_tokens:],
                        scale=output_block_scale,
                        scale_start_index=num_decode_tokens,
                        original_shape=prefill_query.shape,
                    )
                else:
                    assert self.o_sf_scale is None
                    out = output[num_decode_tokens:]

                if (
                    attn_metadata.q_data_type != FP8_DTYPE
                    and self.kv_cache_dtype.startswith("fp8")
                ):
                    # TRTLLM prefill attention does not support BF16 Q
                    # and fp8 kv cache. So to enable prefill attention
                    # with fp8 kv cache, we can construct a mock block
                    # and mock kv cache with BF16 KV involved in the prefill
                    mock_kv_cache, mock_block_table = trtllm_prefill_attn_kvfp8_dequant(
                        kv_cache_permute,
                        block_tables_prefill,
                        layer._k_scale,
                        layer._v_scale,
                        attn_metadata.q_data_type,
                    )
                else:
                    mock_kv_cache = kv_cache_permute
                    mock_block_table = block_tables_prefill

                trtllm_batch_context_with_kv_cache(
                    query=prefill_query,
                    kv_cache=mock_kv_cache,
                    workspace_buffer=workspace_buffer,
                    block_tables=mock_block_table,
                    seq_lens=seq_lens_prefill,
                    max_q_len=attn_metadata.prefill.max_q_len,
                    max_kv_len=attn_metadata.prefill.max_seq_len,
                    bmm1_scale=self.bmm1_scale,
                    bmm2_scale=self.bmm2_scale,
                    batch_size=attn_metadata.num_prefills,
                    cum_seq_lens_q=attn_metadata.prefill.cum_seq_lens_q,
                    cum_seq_lens_kv=attn_metadata.prefill.cum_seq_lens_kv,
                    window_left=self.window_left,
                    sinks=self.sinks,
                    o_sf_scale=self.o_sf_scale,
                    out=out,
                )

        if num_decode_tokens > 0:
            decode_query = query[:num_decode_tokens]
            assert decode_query.shape[0] == num_decode_tokens

            if not decode_use_trtllm:
                assert isinstance(attn_metadata.decode, FIDecode)
                decode_wrapper = attn_metadata.decode.wrapper
                assert decode_wrapper is not None
                assert decode_wrapper._window_left == self.window_left
                assert decode_wrapper._logits_soft_cap == (self.logits_soft_cap or 0.0)
                assert decode_wrapper._sm_scale == self.scale

                if use_dcp:
                    decode_query = get_dcp_group().all_gather(
                        decode_query.contiguous(), dim=-2
                    )
                    output_tmp = torch.empty_like(decode_query)
                    lse = torch.empty(
                        (decode_query.size(0), decode_query.size(1)),
                        dtype=torch.float32,
                        device=decode_query.device,
                    )
                    decode_wrapper.run(
                        decode_query,
                        kv_cache_permute,
                        k_scale=layer._k_scale_float,
                        v_scale=layer._v_scale_float,
                        out=output_tmp,
                        lse=lse,
                        return_lse=True,
                    )
                    output[:num_decode_tokens] = cp_lse_ag_out_rs(
                        output_tmp,
                        lse,
                        get_dcp_group(),
                        is_lse_base_on_e=False,
                    )
                else:
                    decode_wrapper.run(
                        decode_query,
                        kv_cache_permute,
                        k_scale=layer._k_scale_float,
                        v_scale=layer._v_scale_float,
                        out=output[:num_decode_tokens],
                    )
            else:
                # decode_query may be non-contiguous
                assert isinstance(attn_metadata.decode, TRTLLMDecode)
                decode_query = decode_query.contiguous()
                workspace_buffer = _get_trtllm_gen_workspace_buffer()
                block_tables_decode = attn_metadata.decode.block_tables
                seq_lens_decode = attn_metadata.decode.seq_lens

                # This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
                assert get_kv_cache_layout() == "HND"
                assert is_strictly_contiguous(decode_query)
                assert is_strictly_contiguous(kv_cache_permute)
                assert is_strictly_contiguous(workspace_buffer)
                assert is_strictly_contiguous(block_tables_decode)
                assert is_strictly_contiguous(seq_lens_decode)

                if output.dtype == FP4_DTYPE:
                    assert self.o_sf_scale is not None
                    out = FP4Tensor(
                        data=output[:num_decode_tokens],
                        scale=output_block_scale,
                        scale_start_index=0,
                        original_shape=decode_query.shape,
                    )
                else:
                    assert self.o_sf_scale is None
                    out = output[:num_decode_tokens]

                if num_decode_tokens % attn_metadata.num_decodes != 0:
                    # This gets triggered when the dummy_run forces
                    # attention to be initialized with q_len = 0
                    q_len_per_req = 1
                else:
                    q_len_per_req = num_decode_tokens // attn_metadata.num_decodes

                trtllm_batch_decode_with_kv_cache(
                    query=decode_query,
                    kv_cache=kv_cache_permute,
                    workspace_buffer=workspace_buffer,
                    block_tables=block_tables_decode,
                    seq_lens=seq_lens_decode,
                    max_seq_len=attn_metadata.decode.max_seq_len,
                    bmm1_scale=self.bmm1_scale,
                    bmm2_scale=self.bmm2_scale,
                    window_left=self.window_left,
                    sinks=self.sinks,
                    o_sf_scale=self.o_sf_scale,
                    out=out,
                    q_len_per_req=q_len_per_req,
                )
        return output_padded

alibi_slopes instance-attribute

alibi_slopes = alibi_slopes

bmm1_scale instance-attribute

bmm1_scale: float | None = None

bmm2_scale instance-attribute

bmm2_scale: float | None = None

can_return_lse_for_decode class-attribute instance-attribute

can_return_lse_for_decode: bool = True

head_size instance-attribute

head_size = head_size

kv_cache_dtype instance-attribute

kv_cache_dtype = kv_cache_dtype

kv_sharing_target_layer_name instance-attribute

kv_sharing_target_layer_name = kv_sharing_target_layer_name

logits_soft_cap instance-attribute

logits_soft_cap = logits_soft_cap

num_heads instance-attribute

num_heads = num_heads

num_kv_heads instance-attribute

num_kv_heads = num_kv_heads

num_queries_per_kv instance-attribute

num_queries_per_kv = num_heads // num_kv_heads

o_sf_scale instance-attribute

o_sf_scale: float | None = None

scale instance-attribute

scale = float(scale)

sinks instance-attribute

sinks: Tensor | None = None

sliding_window instance-attribute

sliding_window = (-1, -1)

support_trtllm_attn instance-attribute

support_trtllm_attn = can_use_trtllm_attention(
    num_heads, num_kv_heads
)

supports_quant_query_input instance-attribute

supports_quant_query_input = (
    support_trtllm_attn
    and not disable_flashinfer_q_quantization
)

window_left instance-attribute

window_left = (
    sliding_window[0] if sliding_window is not None else -1
)

__init__

__init__(
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: int,
    alibi_slopes: list[float] | None,
    sliding_window: int | None,
    kv_cache_dtype: str,
    logits_soft_cap: float | None = None,
    attn_type: AttentionType = DECODER,
    kv_sharing_target_layer_name: int | None = None,
    sinks: Tensor | None = None,
) -> None
Source code in vllm/v1/attention/backends/flashinfer.py
def __init__(
    self,
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: int,
    alibi_slopes: list[float] | None,
    sliding_window: int | None,
    kv_cache_dtype: str,
    logits_soft_cap: float | None = None,
    attn_type: AttentionType = AttentionType.DECODER,
    kv_sharing_target_layer_name: int | None = None,
    sinks: torch.Tensor | None = None,
) -> None:
    self.num_heads = num_heads
    self.head_size = head_size
    self.scale = float(scale)
    self.num_kv_heads = num_kv_heads
    if alibi_slopes is not None:
        alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
    self.alibi_slopes = alibi_slopes
    if sliding_window is None:
        self.sliding_window = (-1, -1)
    else:
        self.sliding_window = (sliding_window - 1, 0)
    self.window_left = (
        self.sliding_window[0] if self.sliding_window is not None else -1
    )
    self.kv_cache_dtype = kv_cache_dtype
    self.logits_soft_cap = logits_soft_cap
    self.kv_sharing_target_layer_name = kv_sharing_target_layer_name

    self.num_queries_per_kv = self.num_heads // self.num_kv_heads

    if attn_type != AttentionType.DECODER:
        raise NotImplementedError(
            "Encoder self-attention and "
            "encoder/decoder cross-attention "
            "are not implemented for "
            "FlashInferImpl"
        )

    self.sinks: torch.Tensor | None = None
    if sinks is not None:
        if sinks.shape[0] != num_heads:
            raise ValueError(
                "Sinks must have the same number of heads as the number of "
                f"heads in the layer. Expected {num_heads}, but got "
                f"{sinks.shape[0]}."
            )
        self.sinks = sinks

    self.support_trtllm_attn = can_use_trtllm_attention(num_heads, num_kv_heads)
    vllm_config = get_current_vllm_config()
    self.supports_quant_query_input = (
        self.support_trtllm_attn
        and not vllm_config.attention_config.disable_flashinfer_q_quantization
    )
    self.bmm1_scale: float | None = None
    self.bmm2_scale: float | None = None
    self.o_sf_scale: float | None = None

forward

forward(
    layer: Module,
    query: Tensor,
    key: Tensor,
    value: Tensor,
    kv_cache: Tensor,
    attn_metadata: FlashInferMetadata,
    output: Tensor | None = None,
    output_scale: Tensor | None = None,
    output_block_scale: Tensor | None = None,
) -> Tensor

Forward pass with FlashInfer.

Parameters:

Name Type Description Default
query Tensor

shape = [num_tokens, num_heads, head_size]

required
key Tensor

shape = [num_tokens, num_kv_heads, head_size]

required
value Tensor

shape = [num_tokens, num_kv_heads, head_size]

required
kv_cache Tensor

KV cache tensor with different possible shapes: - NHD: [num_blocks, 2, block_size, num_kv_heads, head_size] - HND: [num_blocks, 2, num_kv_heads, block_size, head_size]

required
attn_metadata FlashInferMetadata

Metadata for attention.

required

Returns: shape = [num_tokens, num_heads * head_size]

Source code in vllm/v1/attention/backends/flashinfer.py
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
def forward(
    self,
    layer: torch.nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: torch.Tensor,
    attn_metadata: FlashInferMetadata,
    output: torch.Tensor | None = None,
    output_scale: torch.Tensor | None = None,
    output_block_scale: torch.Tensor | None = None,
) -> torch.Tensor:
    """Forward pass with FlashInfer.

    Args:
        query: shape = [num_tokens, num_heads, head_size]
        key: shape = [num_tokens, num_kv_heads, head_size]
        value: shape = [num_tokens, num_kv_heads, head_size]
        kv_cache: KV cache tensor with different possible shapes:
            - NHD: [num_blocks, 2, block_size, num_kv_heads, head_size]
            - HND: [num_blocks, 2, num_kv_heads, block_size, head_size]
        attn_metadata: Metadata for attention.
    Returns:
        shape = [num_tokens, num_heads * head_size]
    """
    assert output is not None, "Output tensor must be provided."

    if attn_metadata is None:
        # Profiling run.
        return output.fill_(0)

    # Ensure query dtype matches the expected dtype from attention metadata
    assert attn_metadata.q_data_type == query.dtype, (
        f"Query dtype mismatch: expected {attn_metadata.q_data_type}, "
        f"got {query.dtype}"
    )

    if self.bmm1_scale is None:
        self.bmm1_scale = layer._q_scale_float * layer._k_scale_float * self.scale

    if self.bmm2_scale is None:
        self.bmm2_scale = layer._v_scale_float

    prefill_use_trtllm = isinstance(attn_metadata.prefill, TRTLLMPrefill)
    decode_use_trtllm = isinstance(attn_metadata.decode, TRTLLMDecode)

    # The attn+quant fusion happens when output_scale is provided.
    if output_scale is None:
        assert output_block_scale is None, (
            "output_block_scale is not supported when fusion has not happened"
        )
    else:
        assert attn_metadata.q_data_type == FP8_DTYPE, (
            "Query must be FP8 when attn+quant fusion happened."
        )
        assert (attn_metadata.num_prefills == 0 or prefill_use_trtllm) and (
            attn_metadata.num_decodes == 0 or decode_use_trtllm
        ), "Must use TRT-LLM attn"

        if output.dtype == FP8_DTYPE:
            assert output_block_scale is None, (
                "output_block_scale should not be provided for fp8 output"
            )
        elif output.dtype == FP4_DTYPE:
            assert output_block_scale is not None, (
                "output_block_scale is required for nvfp4 output"
            )
        else:
            raise ValueError(f"Unsupported output dtype: {output.dtype}")

        # TRTLLM attn kernel requires to scale to pass as a host scalar,
        # store the o scale as a host scalar in warmup run with cuda graph
        # not enabled
        if layer._o_scale_float is None:
            layer._o_scale_float = output_scale.cpu().item()
            if output.dtype == FP8_DTYPE:
                self.bmm2_scale = self.bmm2_scale / layer._o_scale_float
            elif output.dtype == FP4_DTYPE:
                self.o_sf_scale = layer._o_scale_float

    # IMPORTANT!
    # NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
    # eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
    # in this method. For example, `view` and `slice` (or `[:n]`) operations
    # are surprisingly slow even in the case they do not invoke any GPU ops.
    # Minimize the PyTorch ops in this method as much as possible.
    # Whenever making a change in this method, please benchmark the
    # performance to make sure it does not introduce any overhead.

    num_actual_tokens = attn_metadata.num_actual_tokens

    if self.kv_sharing_target_layer_name is None:
        # Reshape the input keys and values and store them in the cache.
        # Skip this if sharing KV cache with an earlier attention layer.
        # NOTE(woosuk): Here, key and value are padded while slot_mapping is
        # not padded. However, we don't need to do key[:num_actual_tokens]
        # and value[:num_actual_tokens] because the reshape_and_cache_flash
        # op uses the slot_mapping's shape to determine the number of
        # actual tokens.
        torch.ops._C_cache_ops.reshape_and_cache_flash(
            key,
            value,
            kv_cache[:, 0],
            kv_cache[:, 1],
            attn_metadata.slot_mapping,
            self.kv_cache_dtype,
            layer._k_scale,
            layer._v_scale,
        )

        # The FlashInfer api requires data to be in fp8_e4m3 or fp8_e5m2
        # to process the cache when the kv_cache_dtype is fp8
        if self.kv_cache_dtype.startswith("fp8"):
            torch_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
                self.kv_cache_dtype
            )
            kv_cache = kv_cache.view(torch_dtype)

    # Inputs and outputs may be padded for CUDA graphs
    query = query[:num_actual_tokens]
    key = key[:num_actual_tokens]
    value = value[:num_actual_tokens]
    output_padded = output
    output = output[:num_actual_tokens]

    if attn_metadata.use_cascade:
        # Cascade attention (rare case).
        assert attn_metadata.cascade_wrapper is not None
        output.copy_(attn_metadata.cascade_wrapper.run(query, kv_cache))
        return output

    # When using spec decoding, num_decodes can be < num_decode_tokens
    # because some decode requests may have more than one query token.
    num_decode_tokens = attn_metadata.num_decode_tokens
    num_prefill_tokens = attn_metadata.num_prefill_tokens

    stride_order = FlashInferBackend.get_kv_cache_stride_order()
    kv_cache_permute = kv_cache.permute(*stride_order)

    use_dcp = self.dcp_world_size > 1

    # Regular attention (common case).
    # Decodes are at the front and prefills are at the back.
    if num_prefill_tokens > 0:
        prefill_query = query[num_decode_tokens:]
        assert prefill_query.shape[0] == num_prefill_tokens

        if not prefill_use_trtllm:
            assert isinstance(attn_metadata.prefill, FIPrefill)
            prefill_wrapper = attn_metadata.prefill.wrapper
            assert prefill_wrapper is not None
            if use_dcp:
                assert isinstance(prefill_wrapper, BatchDCPPrefillWrapper)
                assert prefill_wrapper._context._window_left == self.window_left
                assert prefill_wrapper._context._logits_soft_cap == (
                    self.logits_soft_cap or 0.0
                )
                assert prefill_wrapper._context._sm_scale == self.scale
                assert not prefill_wrapper._context._causal
                assert prefill_wrapper._new_tokens._window_left == self.window_left
                assert prefill_wrapper._new_tokens._logits_soft_cap == (
                    self.logits_soft_cap or 0.0
                )
                assert prefill_wrapper._new_tokens._sm_scale == self.scale
                assert prefill_wrapper._new_tokens._causal

                prefill_wrapper.run(
                    layer,
                    prefill_query,
                    kv_cache_permute,
                    key[num_decode_tokens:],
                    value[num_decode_tokens:],
                    out=output[num_decode_tokens:],
                )
            else:
                assert isinstance(
                    prefill_wrapper, BatchPrefillWithPagedKVCacheWrapper
                )
                assert prefill_wrapper._window_left == self.window_left
                assert prefill_wrapper._logits_soft_cap == (
                    self.logits_soft_cap or 0.0
                )
                assert prefill_wrapper._sm_scale == self.scale
                assert prefill_wrapper._causal
                prefill_wrapper.run(
                    prefill_query,
                    kv_cache_permute,
                    k_scale=layer._k_scale_float,
                    v_scale=layer._v_scale_float,
                    out=output[num_decode_tokens:],
                )
        else:
            assert isinstance(attn_metadata.prefill, TRTLLMPrefill)
            # prefill_query may be non-contiguous
            prefill_query = prefill_query.contiguous()
            workspace_buffer = _get_trtllm_gen_workspace_buffer()
            block_tables_prefill = attn_metadata.prefill.block_tables
            seq_lens_prefill = attn_metadata.prefill.seq_lens

            # This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
            assert get_kv_cache_layout() == "HND"
            assert is_strictly_contiguous(prefill_query)
            assert is_strictly_contiguous(kv_cache_permute)
            assert is_strictly_contiguous(workspace_buffer)
            assert is_strictly_contiguous(block_tables_prefill)
            assert is_strictly_contiguous(seq_lens_prefill)

            if output.dtype == FP4_DTYPE:
                assert self.o_sf_scale is not None
                out = FP4Tensor(
                    data=output[num_decode_tokens:],
                    scale=output_block_scale,
                    scale_start_index=num_decode_tokens,
                    original_shape=prefill_query.shape,
                )
            else:
                assert self.o_sf_scale is None
                out = output[num_decode_tokens:]

            if (
                attn_metadata.q_data_type != FP8_DTYPE
                and self.kv_cache_dtype.startswith("fp8")
            ):
                # TRTLLM prefill attention does not support BF16 Q
                # and fp8 kv cache. So to enable prefill attention
                # with fp8 kv cache, we can construct a mock block
                # and mock kv cache with BF16 KV involved in the prefill
                mock_kv_cache, mock_block_table = trtllm_prefill_attn_kvfp8_dequant(
                    kv_cache_permute,
                    block_tables_prefill,
                    layer._k_scale,
                    layer._v_scale,
                    attn_metadata.q_data_type,
                )
            else:
                mock_kv_cache = kv_cache_permute
                mock_block_table = block_tables_prefill

            trtllm_batch_context_with_kv_cache(
                query=prefill_query,
                kv_cache=mock_kv_cache,
                workspace_buffer=workspace_buffer,
                block_tables=mock_block_table,
                seq_lens=seq_lens_prefill,
                max_q_len=attn_metadata.prefill.max_q_len,
                max_kv_len=attn_metadata.prefill.max_seq_len,
                bmm1_scale=self.bmm1_scale,
                bmm2_scale=self.bmm2_scale,
                batch_size=attn_metadata.num_prefills,
                cum_seq_lens_q=attn_metadata.prefill.cum_seq_lens_q,
                cum_seq_lens_kv=attn_metadata.prefill.cum_seq_lens_kv,
                window_left=self.window_left,
                sinks=self.sinks,
                o_sf_scale=self.o_sf_scale,
                out=out,
            )

    if num_decode_tokens > 0:
        decode_query = query[:num_decode_tokens]
        assert decode_query.shape[0] == num_decode_tokens

        if not decode_use_trtllm:
            assert isinstance(attn_metadata.decode, FIDecode)
            decode_wrapper = attn_metadata.decode.wrapper
            assert decode_wrapper is not None
            assert decode_wrapper._window_left == self.window_left
            assert decode_wrapper._logits_soft_cap == (self.logits_soft_cap or 0.0)
            assert decode_wrapper._sm_scale == self.scale

            if use_dcp:
                decode_query = get_dcp_group().all_gather(
                    decode_query.contiguous(), dim=-2
                )
                output_tmp = torch.empty_like(decode_query)
                lse = torch.empty(
                    (decode_query.size(0), decode_query.size(1)),
                    dtype=torch.float32,
                    device=decode_query.device,
                )
                decode_wrapper.run(
                    decode_query,
                    kv_cache_permute,
                    k_scale=layer._k_scale_float,
                    v_scale=layer._v_scale_float,
                    out=output_tmp,
                    lse=lse,
                    return_lse=True,
                )
                output[:num_decode_tokens] = cp_lse_ag_out_rs(
                    output_tmp,
                    lse,
                    get_dcp_group(),
                    is_lse_base_on_e=False,
                )
            else:
                decode_wrapper.run(
                    decode_query,
                    kv_cache_permute,
                    k_scale=layer._k_scale_float,
                    v_scale=layer._v_scale_float,
                    out=output[:num_decode_tokens],
                )
        else:
            # decode_query may be non-contiguous
            assert isinstance(attn_metadata.decode, TRTLLMDecode)
            decode_query = decode_query.contiguous()
            workspace_buffer = _get_trtllm_gen_workspace_buffer()
            block_tables_decode = attn_metadata.decode.block_tables
            seq_lens_decode = attn_metadata.decode.seq_lens

            # This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
            assert get_kv_cache_layout() == "HND"
            assert is_strictly_contiguous(decode_query)
            assert is_strictly_contiguous(kv_cache_permute)
            assert is_strictly_contiguous(workspace_buffer)
            assert is_strictly_contiguous(block_tables_decode)
            assert is_strictly_contiguous(seq_lens_decode)

            if output.dtype == FP4_DTYPE:
                assert self.o_sf_scale is not None
                out = FP4Tensor(
                    data=output[:num_decode_tokens],
                    scale=output_block_scale,
                    scale_start_index=0,
                    original_shape=decode_query.shape,
                )
            else:
                assert self.o_sf_scale is None
                out = output[:num_decode_tokens]

            if num_decode_tokens % attn_metadata.num_decodes != 0:
                # This gets triggered when the dummy_run forces
                # attention to be initialized with q_len = 0
                q_len_per_req = 1
            else:
                q_len_per_req = num_decode_tokens // attn_metadata.num_decodes

            trtllm_batch_decode_with_kv_cache(
                query=decode_query,
                kv_cache=kv_cache_permute,
                workspace_buffer=workspace_buffer,
                block_tables=block_tables_decode,
                seq_lens=seq_lens_decode,
                max_seq_len=attn_metadata.decode.max_seq_len,
                bmm1_scale=self.bmm1_scale,
                bmm2_scale=self.bmm2_scale,
                window_left=self.window_left,
                sinks=self.sinks,
                o_sf_scale=self.o_sf_scale,
                out=out,
                q_len_per_req=q_len_per_req,
            )
    return output_padded

fused_output_quant_supported

fused_output_quant_supported(quant_key: QuantKey)
Source code in vllm/v1/attention/backends/flashinfer.py
def fused_output_quant_supported(self, quant_key: QuantKey):
    return (
        self.support_trtllm_attn
        and self.kv_cache_dtype.startswith("fp8")
        and quant_key in (kFp8StaticTensorSym, kNvfp4Quant)
    )

process_weights_after_loading

process_weights_after_loading(act_dtype: dtype)
Source code in vllm/v1/attention/backends/flashinfer.py
def process_weights_after_loading(self, act_dtype: torch.dtype):
    if self.sinks is not None and self.sinks.dtype != torch.float32:
        self.sinks = self.sinks.to(torch.float32)

FlashInferMetadata dataclass

Source code in vllm/v1/attention/backends/flashinfer.py
@dataclass
class FlashInferMetadata:
    num_actual_tokens: int
    """Total number of tokens in the batch (excluding padding)."""

    slot_mapping: torch.Tensor
    """Tensor for writing K/V to the cache. Shape: [num_actual_tokens]"""

    q_data_type: torch.dtype

    num_decodes: int
    num_decode_tokens: int
    num_prefills: int
    num_prefill_tokens: int

    prefill: FIPrefill | TRTLLMPrefill | None
    """
    Holds the metadata for the prefill portion of the batch.
    Will be `None` if `num_prefill_tokens == 0`.
    """

    decode: FIDecode | TRTLLMDecode | None
    """
    Holds the metadata for the decode portion of the batch.
    Will be `None` if `num_decode_tokens == 0`.
    """

    # --- Special Case: Cascade Attention ---

    use_cascade: bool
    """
    If True, the entire batch is a cascade attention call, and the
    `prefill` and `decode` fields will both be None.
    """

    cascade_wrapper: MultiLevelCascadeAttentionWrapper | None

cascade_wrapper instance-attribute

cascade_wrapper: MultiLevelCascadeAttentionWrapper | None

decode instance-attribute

decode: FIDecode | TRTLLMDecode | None

Holds the metadata for the decode portion of the batch. Will be None if num_decode_tokens == 0.

num_actual_tokens instance-attribute

num_actual_tokens: int

Total number of tokens in the batch (excluding padding).

num_decode_tokens instance-attribute

num_decode_tokens: int

num_decodes instance-attribute

num_decodes: int

num_prefill_tokens instance-attribute

num_prefill_tokens: int

num_prefills instance-attribute

num_prefills: int

prefill instance-attribute

prefill: FIPrefill | TRTLLMPrefill | None

Holds the metadata for the prefill portion of the batch. Will be None if num_prefill_tokens == 0.

q_data_type instance-attribute

q_data_type: dtype

slot_mapping instance-attribute

slot_mapping: Tensor

Tensor for writing K/V to the cache. Shape: [num_actual_tokens]

use_cascade instance-attribute

use_cascade: bool

If True, the entire batch is a cascade attention call, and the prefill and decode fields will both be None.

__init__

__init__(
    num_actual_tokens: int,
    slot_mapping: Tensor,
    q_data_type: dtype,
    num_decodes: int,
    num_decode_tokens: int,
    num_prefills: int,
    num_prefill_tokens: int,
    prefill: FIPrefill | TRTLLMPrefill | None,
    decode: FIDecode | TRTLLMDecode | None,
    use_cascade: bool,
    cascade_wrapper: MultiLevelCascadeAttentionWrapper
    | None,
) -> None

FlashInferMetadataBuilder

Bases: AttentionMetadataBuilder[FlashInferMetadata]

Source code in vllm/v1/attention/backends/flashinfer.py
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
    reorder_batch_threshold: int = 1

    def __init__(
        self,
        kv_cache_spec: AttentionSpec,
        layer_names: list[str],
        vllm_config: VllmConfig,
        device: torch.device,
    ):
        super().__init__(kv_cache_spec, layer_names, vllm_config, device)
        self.cache_config = vllm_config.cache_config
        self.model_config = vllm_config.model_config
        self.attention_config = vllm_config.attention_config
        self._workspace_buffer = None
        self._prefill_wrapper: (
            BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper | None
        ) = None  # Wrapper for prefill/append
        self._decode_wrapper = None  # Wrapper for decode (general shape)

        if vllm_is_batch_invariant():
            self.decode_fixed_split_size = 2048
            self.prefill_fixed_split_size = 4096
            self.disable_split_kv = True
        else:
            self.decode_fixed_split_size = -1
            self.prefill_fixed_split_size = -1
            self.disable_split_kv = False

        self.compilation_config = vllm_config.compilation_config
        max_num_pages_per_req = cdiv(
            self.model_config.max_model_len, self.kv_cache_spec.block_size
        )
        max_num_reqs = vllm_config.scheduler_config.max_num_seqs
        max_num_pages = max_num_reqs * max_num_pages_per_req
        speculative_config = vllm_config.speculative_config
        num_spec_tokens = (
            speculative_config.num_speculative_tokens
            if speculative_config is not None
            else 0
        )
        self.enable_cuda_graph = (
            self.compilation_config.cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
        )
        if self.enable_cuda_graph:
            # For full cudagraph capture, one `decode_wrapper` for each batch
            # size is needed for FlashInfer.
            self._decode_wrappers_cudagraph: dict[
                int, BatchDecodeWithPagedKVCacheWrapper
            ] = {}
            self._decode_cudagraph_max_bs = (1 + num_spec_tokens) * max_num_reqs
            if self.compilation_config.max_cudagraph_capture_size is not None:
                self._decode_cudagraph_max_bs = min(
                    self._decode_cudagraph_max_bs,
                    self.compilation_config.max_cudagraph_capture_size,
                )
        try:
            self.dcp_world_size = get_dcp_group().world_size
            self.dcp_rank = get_dcp_group().rank_in_group
            self.dcp_kv_cache_interleave_size = (
                vllm_config.parallel_config.dcp_kv_cache_interleave_size
            )
        except AssertionError:
            # DCP might not be initialized in testing
            self.dcp_world_size = 1
            self.dcp_rank = 0
            self.dcp_kv_cache_interleave_size = 1
        self.use_dcp = self.dcp_world_size > 1

        self.num_qo_heads = self.model_config.get_num_attention_heads(
            self.vllm_config.parallel_config
        )

        self.num_kv_heads = self.kv_cache_spec.num_kv_heads
        self.head_dim = self.kv_cache_spec.head_size
        self.page_size = self.kv_cache_spec.block_size

        self.cache_dtype = self.cache_config.cache_dtype
        if self.cache_dtype.startswith("fp8"):
            self.kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
                self.cache_dtype
            )
        else:
            assert self.kv_cache_spec.dtype == self.model_config.dtype
            self.kv_cache_dtype = self.kv_cache_spec.dtype

        # Use model dtype as q dtype when TRTLLM attn is not supported, or
        # --attention-config.disable_flashinfer_q_quantization is set to 1. Otherwise,
        # try to use fp8 q if kv cache is fp8, and will fall back to model dtype
        # if TRTLLM attention kernel is not used when building attn metadata
        can_use_trtllm = can_use_trtllm_attention(self.num_qo_heads, self.num_kv_heads)
        if (
            can_use_trtllm
            and not vllm_config.attention_config.disable_flashinfer_q_quantization
        ):
            self.q_data_type = self.kv_cache_dtype
        else:
            self.q_data_type = self.model_config.dtype

        # Prefer TRTLLM attention for decoding in all cases.
        # This allows us to use AttentionCGSupport.UNIFORM_BATCH mode.
        self.use_trtllm_decode_attention = can_use_trtllm
        self._init_reorder_batch_threshold(1, supports_spec_as_decode=can_use_trtllm)

        self._cascade_wrapper = None  # Wrapper for cascade attention

        # Global hyperparameters shared by all attention layers
        # TODO: discard this for trtllm-gen backend
        self.global_hyperparameters = infer_global_hyperparameters(
            get_per_layer_parameters(vllm_config, layer_names, FlashInferImpl)
        )
        self.sm_scale = self.global_hyperparameters.sm_scale
        self.window_left = self.global_hyperparameters.window_left
        self.logits_soft_cap = self.global_hyperparameters.logits_soft_cap
        self.has_sinks = self.global_hyperparameters.has_sinks
        if self.has_sinks and not can_use_trtllm:
            raise NotImplementedError(
                "FlashInfer backend currently does not support attention "
                "sinks, please use trtllm on blackwell or flash attention on "
                "earlier GPUs."
            )
        # Preparing persistent buffers
        self.pin_memory = is_pin_memory_available()
        self.paged_kv_indptr = self._make_buffer(max_num_reqs + 1)
        self.paged_kv_indptr_cpu_buffer = torch.zeros_like(
            self.paged_kv_indptr.cpu, pin_memory=self.pin_memory
        )  # Extra buffer for mutable paged_kv_indptr.cpu in cuda graph mode
        self.paged_kv_indices = self._make_buffer(max_num_pages)
        self.paged_kv_last_page_len = self._make_buffer(max_num_reqs)

        if self.head_dim == 256 and current_platform.is_device_capability_family(100):
            # https://github.com/flashinfer-ai/flashinfer/issues/1993 reports that
            # head size 256 and block size 16 is not supported on blackwell.
            assert kv_cache_spec.block_size != 16, (
                "There is a bug in FlashInfer "
                "block_size 16 head size 256 support. Please avoid this combination by "
                "passing --block-size 32 or --block-size 64."
            )

    def _make_buffer(
        self, *size: int | torch.SymInt, dtype: torch.dtype = torch.int32
    ) -> CpuGpuBuffer:
        return CpuGpuBuffer(
            *size,
            dtype=dtype,
            device=self.device,
            pin_memory=self.pin_memory,
            with_numpy=True,
        )

    @override  # type: ignore[misc]
    @classmethod
    def get_cudagraph_support(
        cls: type["FlashInferMetadataBuilder"],
        vllm_config: VllmConfig,
        kv_cache_spec: AttentionSpec,
    ) -> AttentionCGSupport:
        has_trtllm_support = can_use_trtllm_attention(
            num_qo_heads=vllm_config.model_config.get_num_attention_heads(
                vllm_config.parallel_config
            ),
            num_kv_heads=kv_cache_spec.num_kv_heads,
        )
        if has_trtllm_support:
            return AttentionCGSupport.UNIFORM_BATCH
        else:
            return AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE

    def _get_workspace_buffer(self):
        if self._workspace_buffer is None:
            buffer_size = envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE
            if vllm_is_batch_invariant():
                buffer_size = FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT
            self._workspace_buffer = torch.zeros(
                buffer_size, dtype=torch.uint8, device=self.device
            )
        return self._workspace_buffer

    def set_workspace_buffer(self, workspace_buffer: torch.Tensor):
        self._workspace_buffer = workspace_buffer

    def _get_prefill_wrapper(
        self,
    ) -> BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper:
        if self._prefill_wrapper is None:
            if self.use_dcp:
                self._prefill_wrapper = BatchDCPPrefillWrapper(
                    workspace_buffer=self._get_workspace_buffer(),
                )
            else:
                self._prefill_wrapper = BatchPrefillWithPagedKVCacheWrapper(
                    self._get_workspace_buffer(), get_kv_cache_layout()
                )
        assert self._prefill_wrapper is not None
        return self._prefill_wrapper

    def _get_decode_wrapper(self, batch_size: int, use_cudagraph: bool = False):
        if use_cudagraph:
            decode_wrapper = self._decode_wrappers_cudagraph.get(batch_size, None)
        else:
            decode_wrapper = self._decode_wrapper

        if decode_wrapper is None:
            if use_cudagraph:
                paged_kv_indptr = self.paged_kv_indptr.gpu[: batch_size + 1]
                paged_kv_indices = self.paged_kv_indices.gpu
                paged_kv_last_page_len = self.paged_kv_last_page_len.gpu[:batch_size]
            else:
                paged_kv_indptr = None
                paged_kv_indices = None
                paged_kv_last_page_len = None
            decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
                self._get_workspace_buffer(),
                get_kv_cache_layout(),
                use_cuda_graph=use_cudagraph,
                paged_kv_indptr_buffer=paged_kv_indptr,
                paged_kv_indices_buffer=paged_kv_indices,
                paged_kv_last_page_len_buffer=paged_kv_last_page_len,
                # Tensor cores are enabled by default because the perf would be
                # at least as good as cuda cores for all attention ops in latest
                # gpus.
                use_tensor_cores=True,
            )

            # save the decode wrapper
            if use_cudagraph:
                self._decode_wrappers_cudagraph[batch_size] = decode_wrapper
            else:
                self._decode_wrapper = decode_wrapper

        return decode_wrapper

    def _get_cascade_wrapper(self):
        if self._cascade_wrapper is None:
            self._cascade_wrapper = MultiLevelCascadeAttentionWrapper(
                2, self._get_workspace_buffer(), get_kv_cache_layout()
            )
        return self._cascade_wrapper

    def _compute_flashinfer_kv_metadata(
        self,
        num_blocks_np: np.ndarray,
        seq_lens_np: np.ndarray,
        block_table_tensor: torch.Tensor,
        num_reqs: int,
        page_size: int,
    ) -> torch.Tensor:
        """
        Compute paged_kv_indptr, paged_kv_indices, paged_kv_last_page_len for FlashInfer
        attention.

        Results are stored in self.paged_kv_indptr,
        self.paged_kv_indices, self.paged_kv_last_page_len buffers.

        Returns paged_kv_indices, a GPU tensor with shape [num_actual_pages].
        """
        # write self.paged_kv_indptr_cpu inplace (0-index is always 0)
        np.cumsum(
            num_blocks_np,
            dtype=np.int32,
            out=self.paged_kv_indptr.np[1 : num_reqs + 1],
        )
        # NOTE(woosuk): Because self.paged_kv_indptr_cpu can be modified
        # after this line (e.g., for cuda graphs), we need to copy the data to
        # self.paged_kv_indptr_buffer to avoid race condition.
        self.paged_kv_indptr_cpu_buffer[: num_reqs + 1] = self.paged_kv_indptr.cpu[
            : num_reqs + 1
        ]
        paged_kv_indptr = self.paged_kv_indptr.gpu[: num_reqs + 1]
        paged_kv_indptr.copy_(
            self.paged_kv_indptr_cpu_buffer[: num_reqs + 1], non_blocking=True
        )

        # write self.paged_kv_indices inplace
        num_actual_pages = self.paged_kv_indptr.np[num_reqs]
        paged_kv_indices = self.paged_kv_indices.gpu[:num_actual_pages]
        _copy_page_indices_kernel[(num_reqs,)](
            paged_kv_indices,
            block_table_tensor,
            block_table_tensor.stride(0),
            paged_kv_indptr,
            BLOCK_SIZE=1024,
        )

        # write self.paged_kv_last_page_len_cpu inplace
        paged_kv_last_page_len_np = seq_lens_np % page_size
        self.paged_kv_last_page_len.np[:num_reqs] = np.where(
            (paged_kv_last_page_len_np == 0) & (seq_lens_np != 0),
            page_size,
            paged_kv_last_page_len_np,
        )
        return paged_kv_indices

    def build(
        self,
        common_prefix_len: int,
        common_attn_metadata: CommonAttentionMetadata,
        fast_build: bool = False,
    ) -> FlashInferMetadata:
        num_reqs = common_attn_metadata.num_reqs
        num_actual_tokens = common_attn_metadata.num_actual_tokens
        num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
            split_decodes_and_prefills(
                common_attn_metadata,
                decode_threshold=self.reorder_batch_threshold,
                require_uniform=True,
            )
        )

        page_size = self.page_size
        max_seq_len = common_attn_metadata.max_seq_len
        seq_lens = common_attn_metadata.seq_lens
        block_table_tensor = common_attn_metadata.block_table_tensor
        qo_indptr = common_attn_metadata.query_start_loc
        qo_indptr_cpu = common_attn_metadata.query_start_loc_cpu

        # Step 1: Decide which dispatch modes to use:
        # - Cascade attention (distinct mode)
        # - Prefill (FI native or TRTLLM)
        # - Decode (FI native or TRTLLM)
        use_cascade = common_prefix_len > 0
        uses_spec_reorder = self.reorder_batch_threshold > 1
        prefill_use_trtllm = use_trtllm_attention(
            self.num_qo_heads,
            self.num_kv_heads,
            num_prefill_tokens,
            max_seq_len,
            self.dcp_world_size,
            self.cache_dtype,
            self.q_data_type,
            is_prefill=True,
            force_use_trtllm=self.attention_config.use_trtllm_attention,
            has_sinks=self.has_sinks,
            has_spec=uses_spec_reorder,
        )
        decode_use_trtllm = (
            self.use_trtllm_decode_attention and self.dcp_world_size <= 1
        )

        all_uses_trtllm = (num_prefills == 0 or prefill_use_trtllm) and (
            num_decodes == 0 or decode_use_trtllm
        )
        is_only_trtllm_decode = num_prefills == 0 and (
            num_decodes > 0 and decode_use_trtllm
        )

        if not all_uses_trtllm:
            if self.has_sinks:
                raise NotImplementedError(
                    "FlashInfer backend currently does not support attention "
                    "sinks, please use trtllm on blackwell or flash attention "
                    "on earlier GPUs."
                )

            if not self.global_hyperparameters.has_same_window_lefts:
                raise ValueError(
                    "Window left is not the same for all layers. "
                    "One potential fix is to set disable_sliding_window=True"
                )

            assert self.global_hyperparameters.has_same_all_params, (
                "FlashInfer backend currently only supports models in which "
                "all layers share the same values for the following "
                "hyperparameters: `window_left`, `logits_soft_cap`, "
                "`sm_scale`."
            )

            # The q quantization is not supported for non-trtllm attention,
            # fall back to model dtype.
            self.q_data_type = self.model_config.dtype

        # Step 2: Initialize the output metadata
        # Leave prefill/decode/cascade_wrapper empty, to be populated
        # case by case depending on the batch contents and backend selection.
        attn_metadata = FlashInferMetadata(
            num_actual_tokens=num_actual_tokens,
            slot_mapping=common_attn_metadata.slot_mapping,
            q_data_type=self.q_data_type,
            num_decodes=num_decodes,
            num_decode_tokens=num_decode_tokens,
            num_prefills=num_prefills,
            num_prefill_tokens=num_prefill_tokens,
            use_cascade=use_cascade,
            prefill=None,
            decode=None,
            cascade_wrapper=None,
        )

        # Guard access to seq_lens_cpu, which may not always be needed
        # and can be expensive to retrieve in async mode.
        needs_seq_lens_cpu = self.use_dcp or use_cascade or not is_only_trtllm_decode
        seq_lens_cpu = (
            common_attn_metadata.seq_lens.cpu() if needs_seq_lens_cpu else None
        )
        seq_lens_np = seq_lens_cpu.numpy() if seq_lens_cpu is not None else None
        num_blocks_np = (
            (seq_lens_np + (page_size - 1)) // page_size
            if seq_lens_np is not None
            else None
        )

        # Adjust seq_lens_cpu for DCP
        if self.use_dcp:
            assert seq_lens_cpu is not None
            if num_prefills > 0:
                qo_indptr_prefill_cpu = (
                    qo_indptr_cpu[num_decodes:] - qo_indptr_cpu[num_decodes]
                )
                query_lens_prefill_cpu = (
                    qo_indptr_prefill_cpu[1:] - qo_indptr_prefill_cpu[:-1]
                )
                seq_lens_cpu[num_decodes:] = (
                    seq_lens_cpu[num_decodes:] - query_lens_prefill_cpu
                )

            seq_lens_cpu = get_dcp_local_seq_lens(
                seq_lens_cpu,
                self.dcp_world_size,
                self.dcp_rank,
                self.dcp_kv_cache_interleave_size,
            )

        # Adjust num_block_np for cascade attention
        if use_cascade:
            assert num_blocks_np is not None
            assert common_prefix_len % page_size == 0
            num_common_kv_blocks = common_prefix_len // page_size
            num_blocks_np -= num_common_kv_blocks

        # Compute paged_kv_indices if necessary
        needs_paged_kv_indices = use_cascade or not is_only_trtllm_decode
        if needs_paged_kv_indices:
            assert num_blocks_np is not None
            assert seq_lens_np is not None
            paged_kv_indices = self._compute_flashinfer_kv_metadata(
                num_blocks_np,
                seq_lens_np,
                block_table_tensor,
                num_reqs,
                page_size,
            )
        else:
            paged_kv_indices = None

        # Early-out for cascade attention
        if use_cascade:
            # Grab the blocks of the shared prefix from the first request.
            num_common_kv_blocks = common_prefix_len // page_size

            # Create CPU versions directly for cascade (no GPU versions needed)
            shared_qo_indptr_cpu = torch.tensor(
                [0, num_actual_tokens], dtype=torch.int32, device="cpu"
            )
            shared_kv_page_indptr_cpu = torch.tensor(
                [0, num_common_kv_blocks], dtype=torch.int32, device="cpu"
            )
            shared_kv_page_indices_cpu = block_table_tensor[0, :num_common_kv_blocks]
            shared_kv_last_page_len_cpu = torch.tensor(
                [page_size], dtype=torch.int32, device="cpu"
            )

            # Remove the blocks of the shared prefix from all requests.
            block_table_tensor = block_table_tensor[:, num_common_kv_blocks:]
            num_blocks_np -= num_common_kv_blocks

            assert paged_kv_indices is not None
            paged_kv_indptr_cpu = self.paged_kv_indptr.cpu[: 1 + num_reqs]
            paged_kv_last_page_len_cpu = self.paged_kv_last_page_len.cpu[:num_reqs]

            attn_metadata.cascade_wrapper = self._get_cascade_wrapper()
            attn_metadata.cascade_wrapper.plan(
                [shared_qo_indptr_cpu, qo_indptr_cpu],
                [shared_kv_page_indptr_cpu, paged_kv_indptr_cpu],
                [shared_kv_page_indices_cpu, paged_kv_indices],
                [shared_kv_last_page_len_cpu, paged_kv_last_page_len_cpu],
                self.num_qo_heads,
                self.num_kv_heads,
                self.head_dim,
                self.page_size,
                causal=True,
                sm_scale=self.sm_scale,
                window_left=self.window_left,
                logits_soft_cap=self.logits_soft_cap,
                q_data_type=self.q_data_type,
                kv_data_type=self.kv_cache_dtype,
            )
            return attn_metadata

        # Step 3: Handle prefill and decode pathways case by case
        ## PREFILL PATHWAY
        if num_prefills > 0:
            # Slices for shared prefill metadata
            prefill_start = num_decodes
            qo_indptr_prefill_cpu = (
                qo_indptr_cpu[prefill_start:] - qo_indptr_cpu[prefill_start]
            )
            assert qo_indptr_prefill_cpu.shape[0] == num_prefills + 1

            if prefill_use_trtllm:
                # Create GPU versions
                qo_indptr_prefill_gpu = (
                    qo_indptr[prefill_start:] - qo_indptr[prefill_start]
                )
                paged_kv_indptr_prefill_gpu = self.paged_kv_indptr.gpu[
                    prefill_start : num_reqs + 1
                ]
                # Compute max_q_len for prefill requests
                query_lens_prefill_cpu = (
                    qo_indptr_prefill_cpu[1:] - qo_indptr_prefill_cpu[:-1]
                )
                max_q_len_prefill = int(query_lens_prefill_cpu.max().item())
                attn_metadata.prefill = TRTLLMPrefill(
                    block_tables=block_table_tensor[prefill_start:],
                    seq_lens=seq_lens[prefill_start:],
                    cum_seq_lens_q=qo_indptr_prefill_gpu,
                    cum_seq_lens_kv=paged_kv_indptr_prefill_gpu,
                    max_q_len=max_q_len_prefill,
                    max_seq_len=max_seq_len,
                )
            else:
                prefill_wrapper = self._get_prefill_wrapper()
                # Slicing CPU buffers that are only needed for FI native prefills
                paged_kv_last_page_len_prefill_cpu = self.paged_kv_last_page_len.cpu[
                    prefill_start:num_reqs
                ]
                assert paged_kv_last_page_len_prefill_cpu.shape[0] == num_prefills
                paged_kv_indptr_prefill_cpu = self.paged_kv_indptr.cpu[
                    prefill_start : num_reqs + 1
                ]
                assert paged_kv_indptr_prefill_cpu.shape[0] == num_prefills + 1
                if self.use_dcp:
                    assert isinstance(prefill_wrapper, BatchDCPPrefillWrapper)
                    prefill_wrapper.plan(
                        qo_indptr_cpu=qo_indptr_prefill_cpu,
                        paged_kv_indptr_cpu=paged_kv_indptr_prefill_cpu,
                        paged_kv_indices=paged_kv_indices,
                        paged_kv_last_page_len_cpu=paged_kv_last_page_len_prefill_cpu,
                        page_size=self.page_size,
                        num_qo_heads=self.num_qo_heads,
                        dcp_world_size=self.dcp_world_size,
                        num_kv_heads=self.num_kv_heads,
                        head_dim=self.head_dim,
                        sm_scale=self.sm_scale,
                        window_left=self.window_left,
                        logits_soft_cap=self.logits_soft_cap,
                        q_data_type=self.q_data_type,
                        kv_cache_dtype=self.kv_cache_dtype,
                        prefill_fixed_split_size=self.prefill_fixed_split_size,
                        disable_split_kv=self.disable_split_kv,
                    )
                else:
                    assert isinstance(
                        prefill_wrapper,
                        BatchPrefillWithPagedKVCacheWrapper,
                    )
                    prefill_wrapper.plan(
                        qo_indptr_prefill_cpu,
                        paged_kv_indptr_prefill_cpu,
                        paged_kv_indices,
                        paged_kv_last_page_len_prefill_cpu,
                        self.num_qo_heads,
                        self.num_kv_heads,
                        self.head_dim,
                        self.page_size,
                        causal=True,
                        sm_scale=self.sm_scale,
                        window_left=self.window_left,
                        logits_soft_cap=self.logits_soft_cap,
                        q_data_type=self.q_data_type,
                        kv_data_type=self.kv_cache_dtype,
                        fixed_split_size=self.prefill_fixed_split_size,
                        disable_split_kv=self.disable_split_kv,
                    )
                attn_metadata.prefill = FIPrefill(wrapper=prefill_wrapper)

        ## DECODE PATHWAY
        if num_decodes > 0:
            if decode_use_trtllm:
                assert num_decode_tokens % num_decodes == 0, (
                    "TRTLLM decode requires uniform query lengths per request."
                )
                attn_metadata.decode = TRTLLMDecode(
                    block_tables=block_table_tensor[:num_decodes],
                    seq_lens=seq_lens[:num_decodes],
                    max_seq_len=max_seq_len,
                )
            else:
                pure_decode = num_prefills == 0
                use_cudagraph = (
                    self.enable_cuda_graph
                    and pure_decode
                    and num_decode_tokens <= self._decode_cudagraph_max_bs
                )
                num_input_tokens = num_decode_tokens

                decode_wrapper = self._get_decode_wrapper(
                    num_input_tokens, use_cudagraph
                )
                # Use the persistent buffer with padding length,
                # instead of the same address but chunked version
                # in atten_metadata when using cudagraph.
                fast_plan_decode(
                    decode_wrapper,
                    self.paged_kv_indptr.cpu[: num_input_tokens + 1],
                    paged_kv_indices,
                    self.paged_kv_last_page_len.cpu[:num_input_tokens],
                    seq_lens_cpu[:num_input_tokens],
                    self.num_qo_heads * self.dcp_world_size,
                    self.num_kv_heads,
                    self.head_dim,
                    self.page_size,
                    # Disable flashinfer's pos encoding and use vllm's rope.
                    pos_encoding_mode="NONE",
                    sm_scale=self.sm_scale,
                    window_left=self.window_left,
                    logits_soft_cap=self.logits_soft_cap,
                    q_data_type=self.q_data_type,
                    kv_data_type=self.kv_cache_dtype,
                    fixed_split_size=self.decode_fixed_split_size,
                    disable_split_kv=self.disable_split_kv,
                )
                attn_metadata.decode = FIDecode(wrapper=decode_wrapper)
        return attn_metadata

    def use_cascade_attention(self, *args, **kwargs) -> bool:
        if self.kv_cache_spec.dtype != self.vllm_config.model_config.dtype:
            # TODO: The cascade wrapper currently does not support setting
            # kv cache dtype to something different from query dtype.
            return False
        # TODO: Cascade attention doesn't work, disable it for now
        # return use_cascade_attention(*args, **kwargs)
        return False

_cascade_wrapper instance-attribute

_cascade_wrapper = None

_decode_cudagraph_max_bs instance-attribute

_decode_cudagraph_max_bs = (
    1 + num_spec_tokens
) * max_num_reqs

_decode_wrapper instance-attribute

_decode_wrapper = None

_decode_wrappers_cudagraph instance-attribute

_decode_wrappers_cudagraph: dict[
    int, BatchDecodeWithPagedKVCacheWrapper
] = {}

_prefill_wrapper instance-attribute

_prefill_wrapper: (
    BatchPrefillWithPagedKVCacheWrapper
    | BatchDCPPrefillWrapper
    | None
) = None

_workspace_buffer instance-attribute

_workspace_buffer = None

attention_config instance-attribute

attention_config = attention_config

cache_config instance-attribute

cache_config = cache_config

cache_dtype instance-attribute

cache_dtype = cache_dtype

compilation_config instance-attribute

compilation_config = compilation_config

dcp_kv_cache_interleave_size instance-attribute

dcp_kv_cache_interleave_size = dcp_kv_cache_interleave_size

dcp_rank instance-attribute

dcp_rank = rank_in_group

dcp_world_size instance-attribute

dcp_world_size = world_size

decode_fixed_split_size instance-attribute

decode_fixed_split_size = 2048

disable_split_kv instance-attribute

disable_split_kv = True

enable_cuda_graph instance-attribute

enable_cuda_graph = decode_mode() == FULL

global_hyperparameters instance-attribute

global_hyperparameters = infer_global_hyperparameters(
    get_per_layer_parameters(
        vllm_config, layer_names, FlashInferImpl
    )
)

has_sinks instance-attribute

has_sinks = has_sinks

head_dim instance-attribute

head_dim = head_size

kv_cache_dtype instance-attribute

kv_cache_dtype = get_fp8_dtype_for_flashinfer(cache_dtype)

logits_soft_cap instance-attribute

logits_soft_cap = logits_soft_cap

model_config instance-attribute

model_config = model_config

num_kv_heads instance-attribute

num_kv_heads = num_kv_heads

num_qo_heads instance-attribute

num_qo_heads = get_num_attention_heads(parallel_config)

page_size instance-attribute

page_size = block_size

paged_kv_indices instance-attribute

paged_kv_indices = _make_buffer(max_num_pages)

paged_kv_indptr instance-attribute

paged_kv_indptr = _make_buffer(max_num_reqs + 1)

paged_kv_indptr_cpu_buffer instance-attribute

paged_kv_indptr_cpu_buffer = zeros_like(
    cpu, pin_memory=pin_memory
)

paged_kv_last_page_len instance-attribute

paged_kv_last_page_len = _make_buffer(max_num_reqs)

pin_memory instance-attribute

pin_memory = is_pin_memory_available()

prefill_fixed_split_size instance-attribute

prefill_fixed_split_size = 4096

q_data_type instance-attribute

q_data_type = kv_cache_dtype

reorder_batch_threshold class-attribute instance-attribute

reorder_batch_threshold: int = 1

sm_scale instance-attribute

sm_scale = sm_scale

use_dcp instance-attribute

use_dcp = dcp_world_size > 1

use_trtllm_decode_attention instance-attribute

use_trtllm_decode_attention = can_use_trtllm

window_left instance-attribute

window_left = window_left

__init__

__init__(
    kv_cache_spec: AttentionSpec,
    layer_names: list[str],
    vllm_config: VllmConfig,
    device: device,
)
Source code in vllm/v1/attention/backends/flashinfer.py
def __init__(
    self,
    kv_cache_spec: AttentionSpec,
    layer_names: list[str],
    vllm_config: VllmConfig,
    device: torch.device,
):
    super().__init__(kv_cache_spec, layer_names, vllm_config, device)
    self.cache_config = vllm_config.cache_config
    self.model_config = vllm_config.model_config
    self.attention_config = vllm_config.attention_config
    self._workspace_buffer = None
    self._prefill_wrapper: (
        BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper | None
    ) = None  # Wrapper for prefill/append
    self._decode_wrapper = None  # Wrapper for decode (general shape)

    if vllm_is_batch_invariant():
        self.decode_fixed_split_size = 2048
        self.prefill_fixed_split_size = 4096
        self.disable_split_kv = True
    else:
        self.decode_fixed_split_size = -1
        self.prefill_fixed_split_size = -1
        self.disable_split_kv = False

    self.compilation_config = vllm_config.compilation_config
    max_num_pages_per_req = cdiv(
        self.model_config.max_model_len, self.kv_cache_spec.block_size
    )
    max_num_reqs = vllm_config.scheduler_config.max_num_seqs
    max_num_pages = max_num_reqs * max_num_pages_per_req
    speculative_config = vllm_config.speculative_config
    num_spec_tokens = (
        speculative_config.num_speculative_tokens
        if speculative_config is not None
        else 0
    )
    self.enable_cuda_graph = (
        self.compilation_config.cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
    )
    if self.enable_cuda_graph:
        # For full cudagraph capture, one `decode_wrapper` for each batch
        # size is needed for FlashInfer.
        self._decode_wrappers_cudagraph: dict[
            int, BatchDecodeWithPagedKVCacheWrapper
        ] = {}
        self._decode_cudagraph_max_bs = (1 + num_spec_tokens) * max_num_reqs
        if self.compilation_config.max_cudagraph_capture_size is not None:
            self._decode_cudagraph_max_bs = min(
                self._decode_cudagraph_max_bs,
                self.compilation_config.max_cudagraph_capture_size,
            )
    try:
        self.dcp_world_size = get_dcp_group().world_size
        self.dcp_rank = get_dcp_group().rank_in_group
        self.dcp_kv_cache_interleave_size = (
            vllm_config.parallel_config.dcp_kv_cache_interleave_size
        )
    except AssertionError:
        # DCP might not be initialized in testing
        self.dcp_world_size = 1
        self.dcp_rank = 0
        self.dcp_kv_cache_interleave_size = 1
    self.use_dcp = self.dcp_world_size > 1

    self.num_qo_heads = self.model_config.get_num_attention_heads(
        self.vllm_config.parallel_config
    )

    self.num_kv_heads = self.kv_cache_spec.num_kv_heads
    self.head_dim = self.kv_cache_spec.head_size
    self.page_size = self.kv_cache_spec.block_size

    self.cache_dtype = self.cache_config.cache_dtype
    if self.cache_dtype.startswith("fp8"):
        self.kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
            self.cache_dtype
        )
    else:
        assert self.kv_cache_spec.dtype == self.model_config.dtype
        self.kv_cache_dtype = self.kv_cache_spec.dtype

    # Use model dtype as q dtype when TRTLLM attn is not supported, or
    # --attention-config.disable_flashinfer_q_quantization is set to 1. Otherwise,
    # try to use fp8 q if kv cache is fp8, and will fall back to model dtype
    # if TRTLLM attention kernel is not used when building attn metadata
    can_use_trtllm = can_use_trtllm_attention(self.num_qo_heads, self.num_kv_heads)
    if (
        can_use_trtllm
        and not vllm_config.attention_config.disable_flashinfer_q_quantization
    ):
        self.q_data_type = self.kv_cache_dtype
    else:
        self.q_data_type = self.model_config.dtype

    # Prefer TRTLLM attention for decoding in all cases.
    # This allows us to use AttentionCGSupport.UNIFORM_BATCH mode.
    self.use_trtllm_decode_attention = can_use_trtllm
    self._init_reorder_batch_threshold(1, supports_spec_as_decode=can_use_trtllm)

    self._cascade_wrapper = None  # Wrapper for cascade attention

    # Global hyperparameters shared by all attention layers
    # TODO: discard this for trtllm-gen backend
    self.global_hyperparameters = infer_global_hyperparameters(
        get_per_layer_parameters(vllm_config, layer_names, FlashInferImpl)
    )
    self.sm_scale = self.global_hyperparameters.sm_scale
    self.window_left = self.global_hyperparameters.window_left
    self.logits_soft_cap = self.global_hyperparameters.logits_soft_cap
    self.has_sinks = self.global_hyperparameters.has_sinks
    if self.has_sinks and not can_use_trtllm:
        raise NotImplementedError(
            "FlashInfer backend currently does not support attention "
            "sinks, please use trtllm on blackwell or flash attention on "
            "earlier GPUs."
        )
    # Preparing persistent buffers
    self.pin_memory = is_pin_memory_available()
    self.paged_kv_indptr = self._make_buffer(max_num_reqs + 1)
    self.paged_kv_indptr_cpu_buffer = torch.zeros_like(
        self.paged_kv_indptr.cpu, pin_memory=self.pin_memory
    )  # Extra buffer for mutable paged_kv_indptr.cpu in cuda graph mode
    self.paged_kv_indices = self._make_buffer(max_num_pages)
    self.paged_kv_last_page_len = self._make_buffer(max_num_reqs)

    if self.head_dim == 256 and current_platform.is_device_capability_family(100):
        # https://github.com/flashinfer-ai/flashinfer/issues/1993 reports that
        # head size 256 and block size 16 is not supported on blackwell.
        assert kv_cache_spec.block_size != 16, (
            "There is a bug in FlashInfer "
            "block_size 16 head size 256 support. Please avoid this combination by "
            "passing --block-size 32 or --block-size 64."
        )

_compute_flashinfer_kv_metadata

_compute_flashinfer_kv_metadata(
    num_blocks_np: ndarray,
    seq_lens_np: ndarray,
    block_table_tensor: Tensor,
    num_reqs: int,
    page_size: int,
) -> Tensor

Compute paged_kv_indptr, paged_kv_indices, paged_kv_last_page_len for FlashInfer attention.

Results are stored in self.paged_kv_indptr, self.paged_kv_indices, self.paged_kv_last_page_len buffers.

Returns paged_kv_indices, a GPU tensor with shape [num_actual_pages].

Source code in vllm/v1/attention/backends/flashinfer.py
def _compute_flashinfer_kv_metadata(
    self,
    num_blocks_np: np.ndarray,
    seq_lens_np: np.ndarray,
    block_table_tensor: torch.Tensor,
    num_reqs: int,
    page_size: int,
) -> torch.Tensor:
    """
    Compute paged_kv_indptr, paged_kv_indices, paged_kv_last_page_len for FlashInfer
    attention.

    Results are stored in self.paged_kv_indptr,
    self.paged_kv_indices, self.paged_kv_last_page_len buffers.

    Returns paged_kv_indices, a GPU tensor with shape [num_actual_pages].
    """
    # write self.paged_kv_indptr_cpu inplace (0-index is always 0)
    np.cumsum(
        num_blocks_np,
        dtype=np.int32,
        out=self.paged_kv_indptr.np[1 : num_reqs + 1],
    )
    # NOTE(woosuk): Because self.paged_kv_indptr_cpu can be modified
    # after this line (e.g., for cuda graphs), we need to copy the data to
    # self.paged_kv_indptr_buffer to avoid race condition.
    self.paged_kv_indptr_cpu_buffer[: num_reqs + 1] = self.paged_kv_indptr.cpu[
        : num_reqs + 1
    ]
    paged_kv_indptr = self.paged_kv_indptr.gpu[: num_reqs + 1]
    paged_kv_indptr.copy_(
        self.paged_kv_indptr_cpu_buffer[: num_reqs + 1], non_blocking=True
    )

    # write self.paged_kv_indices inplace
    num_actual_pages = self.paged_kv_indptr.np[num_reqs]
    paged_kv_indices = self.paged_kv_indices.gpu[:num_actual_pages]
    _copy_page_indices_kernel[(num_reqs,)](
        paged_kv_indices,
        block_table_tensor,
        block_table_tensor.stride(0),
        paged_kv_indptr,
        BLOCK_SIZE=1024,
    )

    # write self.paged_kv_last_page_len_cpu inplace
    paged_kv_last_page_len_np = seq_lens_np % page_size
    self.paged_kv_last_page_len.np[:num_reqs] = np.where(
        (paged_kv_last_page_len_np == 0) & (seq_lens_np != 0),
        page_size,
        paged_kv_last_page_len_np,
    )
    return paged_kv_indices

_get_cascade_wrapper

_get_cascade_wrapper()
Source code in vllm/v1/attention/backends/flashinfer.py
def _get_cascade_wrapper(self):
    if self._cascade_wrapper is None:
        self._cascade_wrapper = MultiLevelCascadeAttentionWrapper(
            2, self._get_workspace_buffer(), get_kv_cache_layout()
        )
    return self._cascade_wrapper

_get_decode_wrapper

_get_decode_wrapper(
    batch_size: int, use_cudagraph: bool = False
)
Source code in vllm/v1/attention/backends/flashinfer.py
def _get_decode_wrapper(self, batch_size: int, use_cudagraph: bool = False):
    if use_cudagraph:
        decode_wrapper = self._decode_wrappers_cudagraph.get(batch_size, None)
    else:
        decode_wrapper = self._decode_wrapper

    if decode_wrapper is None:
        if use_cudagraph:
            paged_kv_indptr = self.paged_kv_indptr.gpu[: batch_size + 1]
            paged_kv_indices = self.paged_kv_indices.gpu
            paged_kv_last_page_len = self.paged_kv_last_page_len.gpu[:batch_size]
        else:
            paged_kv_indptr = None
            paged_kv_indices = None
            paged_kv_last_page_len = None
        decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
            self._get_workspace_buffer(),
            get_kv_cache_layout(),
            use_cuda_graph=use_cudagraph,
            paged_kv_indptr_buffer=paged_kv_indptr,
            paged_kv_indices_buffer=paged_kv_indices,
            paged_kv_last_page_len_buffer=paged_kv_last_page_len,
            # Tensor cores are enabled by default because the perf would be
            # at least as good as cuda cores for all attention ops in latest
            # gpus.
            use_tensor_cores=True,
        )

        # save the decode wrapper
        if use_cudagraph:
            self._decode_wrappers_cudagraph[batch_size] = decode_wrapper
        else:
            self._decode_wrapper = decode_wrapper

    return decode_wrapper

_get_prefill_wrapper

_get_prefill_wrapper() -> (
    BatchPrefillWithPagedKVCacheWrapper
    | BatchDCPPrefillWrapper
)
Source code in vllm/v1/attention/backends/flashinfer.py
def _get_prefill_wrapper(
    self,
) -> BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper:
    if self._prefill_wrapper is None:
        if self.use_dcp:
            self._prefill_wrapper = BatchDCPPrefillWrapper(
                workspace_buffer=self._get_workspace_buffer(),
            )
        else:
            self._prefill_wrapper = BatchPrefillWithPagedKVCacheWrapper(
                self._get_workspace_buffer(), get_kv_cache_layout()
            )
    assert self._prefill_wrapper is not None
    return self._prefill_wrapper

_get_workspace_buffer

_get_workspace_buffer()
Source code in vllm/v1/attention/backends/flashinfer.py
def _get_workspace_buffer(self):
    if self._workspace_buffer is None:
        buffer_size = envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE
        if vllm_is_batch_invariant():
            buffer_size = FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT
        self._workspace_buffer = torch.zeros(
            buffer_size, dtype=torch.uint8, device=self.device
        )
    return self._workspace_buffer

_make_buffer

_make_buffer(
    *size: int | SymInt, dtype: dtype = int32
) -> CpuGpuBuffer
Source code in vllm/v1/attention/backends/flashinfer.py
def _make_buffer(
    self, *size: int | torch.SymInt, dtype: torch.dtype = torch.int32
) -> CpuGpuBuffer:
    return CpuGpuBuffer(
        *size,
        dtype=dtype,
        device=self.device,
        pin_memory=self.pin_memory,
        with_numpy=True,
    )

build

build(
    common_prefix_len: int,
    common_attn_metadata: CommonAttentionMetadata,
    fast_build: bool = False,
) -> FlashInferMetadata
Source code in vllm/v1/attention/backends/flashinfer.py
def build(
    self,
    common_prefix_len: int,
    common_attn_metadata: CommonAttentionMetadata,
    fast_build: bool = False,
) -> FlashInferMetadata:
    num_reqs = common_attn_metadata.num_reqs
    num_actual_tokens = common_attn_metadata.num_actual_tokens
    num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
        split_decodes_and_prefills(
            common_attn_metadata,
            decode_threshold=self.reorder_batch_threshold,
            require_uniform=True,
        )
    )

    page_size = self.page_size
    max_seq_len = common_attn_metadata.max_seq_len
    seq_lens = common_attn_metadata.seq_lens
    block_table_tensor = common_attn_metadata.block_table_tensor
    qo_indptr = common_attn_metadata.query_start_loc
    qo_indptr_cpu = common_attn_metadata.query_start_loc_cpu

    # Step 1: Decide which dispatch modes to use:
    # - Cascade attention (distinct mode)
    # - Prefill (FI native or TRTLLM)
    # - Decode (FI native or TRTLLM)
    use_cascade = common_prefix_len > 0
    uses_spec_reorder = self.reorder_batch_threshold > 1
    prefill_use_trtllm = use_trtllm_attention(
        self.num_qo_heads,
        self.num_kv_heads,
        num_prefill_tokens,
        max_seq_len,
        self.dcp_world_size,
        self.cache_dtype,
        self.q_data_type,
        is_prefill=True,
        force_use_trtllm=self.attention_config.use_trtllm_attention,
        has_sinks=self.has_sinks,
        has_spec=uses_spec_reorder,
    )
    decode_use_trtllm = (
        self.use_trtllm_decode_attention and self.dcp_world_size <= 1
    )

    all_uses_trtllm = (num_prefills == 0 or prefill_use_trtllm) and (
        num_decodes == 0 or decode_use_trtllm
    )
    is_only_trtllm_decode = num_prefills == 0 and (
        num_decodes > 0 and decode_use_trtllm
    )

    if not all_uses_trtllm:
        if self.has_sinks:
            raise NotImplementedError(
                "FlashInfer backend currently does not support attention "
                "sinks, please use trtllm on blackwell or flash attention "
                "on earlier GPUs."
            )

        if not self.global_hyperparameters.has_same_window_lefts:
            raise ValueError(
                "Window left is not the same for all layers. "
                "One potential fix is to set disable_sliding_window=True"
            )

        assert self.global_hyperparameters.has_same_all_params, (
            "FlashInfer backend currently only supports models in which "
            "all layers share the same values for the following "
            "hyperparameters: `window_left`, `logits_soft_cap`, "
            "`sm_scale`."
        )

        # The q quantization is not supported for non-trtllm attention,
        # fall back to model dtype.
        self.q_data_type = self.model_config.dtype

    # Step 2: Initialize the output metadata
    # Leave prefill/decode/cascade_wrapper empty, to be populated
    # case by case depending on the batch contents and backend selection.
    attn_metadata = FlashInferMetadata(
        num_actual_tokens=num_actual_tokens,
        slot_mapping=common_attn_metadata.slot_mapping,
        q_data_type=self.q_data_type,
        num_decodes=num_decodes,
        num_decode_tokens=num_decode_tokens,
        num_prefills=num_prefills,
        num_prefill_tokens=num_prefill_tokens,
        use_cascade=use_cascade,
        prefill=None,
        decode=None,
        cascade_wrapper=None,
    )

    # Guard access to seq_lens_cpu, which may not always be needed
    # and can be expensive to retrieve in async mode.
    needs_seq_lens_cpu = self.use_dcp or use_cascade or not is_only_trtllm_decode
    seq_lens_cpu = (
        common_attn_metadata.seq_lens.cpu() if needs_seq_lens_cpu else None
    )
    seq_lens_np = seq_lens_cpu.numpy() if seq_lens_cpu is not None else None
    num_blocks_np = (
        (seq_lens_np + (page_size - 1)) // page_size
        if seq_lens_np is not None
        else None
    )

    # Adjust seq_lens_cpu for DCP
    if self.use_dcp:
        assert seq_lens_cpu is not None
        if num_prefills > 0:
            qo_indptr_prefill_cpu = (
                qo_indptr_cpu[num_decodes:] - qo_indptr_cpu[num_decodes]
            )
            query_lens_prefill_cpu = (
                qo_indptr_prefill_cpu[1:] - qo_indptr_prefill_cpu[:-1]
            )
            seq_lens_cpu[num_decodes:] = (
                seq_lens_cpu[num_decodes:] - query_lens_prefill_cpu
            )

        seq_lens_cpu = get_dcp_local_seq_lens(
            seq_lens_cpu,
            self.dcp_world_size,
            self.dcp_rank,
            self.dcp_kv_cache_interleave_size,
        )

    # Adjust num_block_np for cascade attention
    if use_cascade:
        assert num_blocks_np is not None
        assert common_prefix_len % page_size == 0
        num_common_kv_blocks = common_prefix_len // page_size
        num_blocks_np -= num_common_kv_blocks

    # Compute paged_kv_indices if necessary
    needs_paged_kv_indices = use_cascade or not is_only_trtllm_decode
    if needs_paged_kv_indices:
        assert num_blocks_np is not None
        assert seq_lens_np is not None
        paged_kv_indices = self._compute_flashinfer_kv_metadata(
            num_blocks_np,
            seq_lens_np,
            block_table_tensor,
            num_reqs,
            page_size,
        )
    else:
        paged_kv_indices = None

    # Early-out for cascade attention
    if use_cascade:
        # Grab the blocks of the shared prefix from the first request.
        num_common_kv_blocks = common_prefix_len // page_size

        # Create CPU versions directly for cascade (no GPU versions needed)
        shared_qo_indptr_cpu = torch.tensor(
            [0, num_actual_tokens], dtype=torch.int32, device="cpu"
        )
        shared_kv_page_indptr_cpu = torch.tensor(
            [0, num_common_kv_blocks], dtype=torch.int32, device="cpu"
        )
        shared_kv_page_indices_cpu = block_table_tensor[0, :num_common_kv_blocks]
        shared_kv_last_page_len_cpu = torch.tensor(
            [page_size], dtype=torch.int32, device="cpu"
        )

        # Remove the blocks of the shared prefix from all requests.
        block_table_tensor = block_table_tensor[:, num_common_kv_blocks:]
        num_blocks_np -= num_common_kv_blocks

        assert paged_kv_indices is not None
        paged_kv_indptr_cpu = self.paged_kv_indptr.cpu[: 1 + num_reqs]
        paged_kv_last_page_len_cpu = self.paged_kv_last_page_len.cpu[:num_reqs]

        attn_metadata.cascade_wrapper = self._get_cascade_wrapper()
        attn_metadata.cascade_wrapper.plan(
            [shared_qo_indptr_cpu, qo_indptr_cpu],
            [shared_kv_page_indptr_cpu, paged_kv_indptr_cpu],
            [shared_kv_page_indices_cpu, paged_kv_indices],
            [shared_kv_last_page_len_cpu, paged_kv_last_page_len_cpu],
            self.num_qo_heads,
            self.num_kv_heads,
            self.head_dim,
            self.page_size,
            causal=True,
            sm_scale=self.sm_scale,
            window_left=self.window_left,
            logits_soft_cap=self.logits_soft_cap,
            q_data_type=self.q_data_type,
            kv_data_type=self.kv_cache_dtype,
        )
        return attn_metadata

    # Step 3: Handle prefill and decode pathways case by case
    ## PREFILL PATHWAY
    if num_prefills > 0:
        # Slices for shared prefill metadata
        prefill_start = num_decodes
        qo_indptr_prefill_cpu = (
            qo_indptr_cpu[prefill_start:] - qo_indptr_cpu[prefill_start]
        )
        assert qo_indptr_prefill_cpu.shape[0] == num_prefills + 1

        if prefill_use_trtllm:
            # Create GPU versions
            qo_indptr_prefill_gpu = (
                qo_indptr[prefill_start:] - qo_indptr[prefill_start]
            )
            paged_kv_indptr_prefill_gpu = self.paged_kv_indptr.gpu[
                prefill_start : num_reqs + 1
            ]
            # Compute max_q_len for prefill requests
            query_lens_prefill_cpu = (
                qo_indptr_prefill_cpu[1:] - qo_indptr_prefill_cpu[:-1]
            )
            max_q_len_prefill = int(query_lens_prefill_cpu.max().item())
            attn_metadata.prefill = TRTLLMPrefill(
                block_tables=block_table_tensor[prefill_start:],
                seq_lens=seq_lens[prefill_start:],
                cum_seq_lens_q=qo_indptr_prefill_gpu,
                cum_seq_lens_kv=paged_kv_indptr_prefill_gpu,
                max_q_len=max_q_len_prefill,
                max_seq_len=max_seq_len,
            )
        else:
            prefill_wrapper = self._get_prefill_wrapper()
            # Slicing CPU buffers that are only needed for FI native prefills
            paged_kv_last_page_len_prefill_cpu = self.paged_kv_last_page_len.cpu[
                prefill_start:num_reqs
            ]
            assert paged_kv_last_page_len_prefill_cpu.shape[0] == num_prefills
            paged_kv_indptr_prefill_cpu = self.paged_kv_indptr.cpu[
                prefill_start : num_reqs + 1
            ]
            assert paged_kv_indptr_prefill_cpu.shape[0] == num_prefills + 1
            if self.use_dcp:
                assert isinstance(prefill_wrapper, BatchDCPPrefillWrapper)
                prefill_wrapper.plan(
                    qo_indptr_cpu=qo_indptr_prefill_cpu,
                    paged_kv_indptr_cpu=paged_kv_indptr_prefill_cpu,
                    paged_kv_indices=paged_kv_indices,
                    paged_kv_last_page_len_cpu=paged_kv_last_page_len_prefill_cpu,
                    page_size=self.page_size,
                    num_qo_heads=self.num_qo_heads,
                    dcp_world_size=self.dcp_world_size,
                    num_kv_heads=self.num_kv_heads,
                    head_dim=self.head_dim,
                    sm_scale=self.sm_scale,
                    window_left=self.window_left,
                    logits_soft_cap=self.logits_soft_cap,
                    q_data_type=self.q_data_type,
                    kv_cache_dtype=self.kv_cache_dtype,
                    prefill_fixed_split_size=self.prefill_fixed_split_size,
                    disable_split_kv=self.disable_split_kv,
                )
            else:
                assert isinstance(
                    prefill_wrapper,
                    BatchPrefillWithPagedKVCacheWrapper,
                )
                prefill_wrapper.plan(
                    qo_indptr_prefill_cpu,
                    paged_kv_indptr_prefill_cpu,
                    paged_kv_indices,
                    paged_kv_last_page_len_prefill_cpu,
                    self.num_qo_heads,
                    self.num_kv_heads,
                    self.head_dim,
                    self.page_size,
                    causal=True,
                    sm_scale=self.sm_scale,
                    window_left=self.window_left,
                    logits_soft_cap=self.logits_soft_cap,
                    q_data_type=self.q_data_type,
                    kv_data_type=self.kv_cache_dtype,
                    fixed_split_size=self.prefill_fixed_split_size,
                    disable_split_kv=self.disable_split_kv,
                )
            attn_metadata.prefill = FIPrefill(wrapper=prefill_wrapper)

    ## DECODE PATHWAY
    if num_decodes > 0:
        if decode_use_trtllm:
            assert num_decode_tokens % num_decodes == 0, (
                "TRTLLM decode requires uniform query lengths per request."
            )
            attn_metadata.decode = TRTLLMDecode(
                block_tables=block_table_tensor[:num_decodes],
                seq_lens=seq_lens[:num_decodes],
                max_seq_len=max_seq_len,
            )
        else:
            pure_decode = num_prefills == 0
            use_cudagraph = (
                self.enable_cuda_graph
                and pure_decode
                and num_decode_tokens <= self._decode_cudagraph_max_bs
            )
            num_input_tokens = num_decode_tokens

            decode_wrapper = self._get_decode_wrapper(
                num_input_tokens, use_cudagraph
            )
            # Use the persistent buffer with padding length,
            # instead of the same address but chunked version
            # in atten_metadata when using cudagraph.
            fast_plan_decode(
                decode_wrapper,
                self.paged_kv_indptr.cpu[: num_input_tokens + 1],
                paged_kv_indices,
                self.paged_kv_last_page_len.cpu[:num_input_tokens],
                seq_lens_cpu[:num_input_tokens],
                self.num_qo_heads * self.dcp_world_size,
                self.num_kv_heads,
                self.head_dim,
                self.page_size,
                # Disable flashinfer's pos encoding and use vllm's rope.
                pos_encoding_mode="NONE",
                sm_scale=self.sm_scale,
                window_left=self.window_left,
                logits_soft_cap=self.logits_soft_cap,
                q_data_type=self.q_data_type,
                kv_data_type=self.kv_cache_dtype,
                fixed_split_size=self.decode_fixed_split_size,
                disable_split_kv=self.disable_split_kv,
            )
            attn_metadata.decode = FIDecode(wrapper=decode_wrapper)
    return attn_metadata

get_cudagraph_support classmethod

get_cudagraph_support(
    vllm_config: VllmConfig, kv_cache_spec: AttentionSpec
) -> AttentionCGSupport
Source code in vllm/v1/attention/backends/flashinfer.py
@override  # type: ignore[misc]
@classmethod
def get_cudagraph_support(
    cls: type["FlashInferMetadataBuilder"],
    vllm_config: VllmConfig,
    kv_cache_spec: AttentionSpec,
) -> AttentionCGSupport:
    has_trtllm_support = can_use_trtllm_attention(
        num_qo_heads=vllm_config.model_config.get_num_attention_heads(
            vllm_config.parallel_config
        ),
        num_kv_heads=kv_cache_spec.num_kv_heads,
    )
    if has_trtllm_support:
        return AttentionCGSupport.UNIFORM_BATCH
    else:
        return AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE

set_workspace_buffer

set_workspace_buffer(workspace_buffer: Tensor)
Source code in vllm/v1/attention/backends/flashinfer.py
def set_workspace_buffer(self, workspace_buffer: torch.Tensor):
    self._workspace_buffer = workspace_buffer

use_cascade_attention

use_cascade_attention(*args, **kwargs) -> bool
Source code in vllm/v1/attention/backends/flashinfer.py
def use_cascade_attention(self, *args, **kwargs) -> bool:
    if self.kv_cache_spec.dtype != self.vllm_config.model_config.dtype:
        # TODO: The cascade wrapper currently does not support setting
        # kv cache dtype to something different from query dtype.
        return False
    # TODO: Cascade attention doesn't work, disable it for now
    # return use_cascade_attention(*args, **kwargs)
    return False

TRTLLMDecode dataclass

Metadata for the TRTLLM decode pathway.

Source code in vllm/v1/attention/backends/flashinfer.py
@dataclass
class TRTLLMDecode:
    """Metadata for the TRTLLM decode pathway."""

    block_tables: torch.Tensor
    """
    The slice of the block table tensor corresponding *only* to decode requests.
    Shape: [num_decodes, max_num_blocks_per_seq]
    """

    seq_lens: torch.Tensor
    """
    The slice of the sequence lengths tensor corresponding *only* to decode requests.
    Shape: [num_decodes]
    """

    max_seq_len: int
    """The maximum sequence length for KV Cache."""

block_tables instance-attribute

block_tables: Tensor

The slice of the block table tensor corresponding only to decode requests. Shape: [num_decodes, max_num_blocks_per_seq]

max_seq_len instance-attribute

max_seq_len: int

The maximum sequence length for KV Cache.

seq_lens instance-attribute

seq_lens: Tensor

The slice of the sequence lengths tensor corresponding only to decode requests. Shape: [num_decodes]

__init__

__init__(
    block_tables: Tensor, seq_lens: Tensor, max_seq_len: int
) -> None

TRTLLMPrefill dataclass

Metadata for the TRTLLM prefill pathway.

Source code in vllm/v1/attention/backends/flashinfer.py
@dataclass
class TRTLLMPrefill:
    """Metadata for the TRTLLM prefill pathway."""

    block_tables: torch.Tensor
    """
    The slice of the block table tensor corresponding *only* to prefill requests.
    Shape: [num_prefills, max_num_blocks_per_seq]
    """

    seq_lens: torch.Tensor
    """
    The slice of the sequence lengths tensor corresponding *only* to prefill requests.
    Shape: [num_prefills]
    """

    cum_seq_lens_q: torch.Tensor
    cum_seq_lens_kv: torch.Tensor

    max_q_len: int
    """
    The maximum query length *among prefill requests*. 
    """

    max_seq_len: int
    """The maximum sequence length for KV Cache."""

block_tables instance-attribute

block_tables: Tensor

The slice of the block table tensor corresponding only to prefill requests. Shape: [num_prefills, max_num_blocks_per_seq]

cum_seq_lens_kv instance-attribute

cum_seq_lens_kv: Tensor

cum_seq_lens_q instance-attribute

cum_seq_lens_q: Tensor

max_q_len instance-attribute

max_q_len: int

The maximum query length among prefill requests.

max_seq_len instance-attribute

max_seq_len: int

The maximum sequence length for KV Cache.

seq_lens instance-attribute

seq_lens: Tensor

The slice of the sequence lengths tensor corresponding only to prefill requests. Shape: [num_prefills]

__init__

__init__(
    block_tables: Tensor,
    seq_lens: Tensor,
    cum_seq_lens_q: Tensor,
    cum_seq_lens_kv: Tensor,
    max_q_len: int,
    max_seq_len: int,
) -> None

_copy_page_indices_kernel

_copy_page_indices_kernel(
    page_indices,
    block_table,
    block_table_stride,
    cu_num_blocks,
    BLOCK_SIZE: constexpr,
)
Source code in vllm/v1/attention/backends/flashinfer.py
@triton.jit
def _copy_page_indices_kernel(
    page_indices,
    block_table,
    block_table_stride,
    cu_num_blocks,
    BLOCK_SIZE: tl.constexpr,
):
    req_idx = tl.program_id(0)
    row_ptr = block_table + req_idx * block_table_stride
    start_idx = tl.load(cu_num_blocks + req_idx)
    end_idx = tl.load(cu_num_blocks + req_idx + 1)
    num_blocks = end_idx - start_idx

    offset = tl.arange(0, BLOCK_SIZE)
    for i in tl.range(0, num_blocks, BLOCK_SIZE):
        block_ids = tl.load(row_ptr + i + offset, mask=i + offset < num_blocks)
        tl.store(
            page_indices + start_idx + i + offset,
            block_ids,
            mask=i + offset < num_blocks,
        )

_get_trtllm_gen_workspace_buffer

_get_trtllm_gen_workspace_buffer()
Source code in vllm/v1/attention/backends/flashinfer.py
def _get_trtllm_gen_workspace_buffer():
    global trtllm_gen_workspace_buffer
    if trtllm_gen_workspace_buffer is None:
        trtllm_gen_workspace_buffer = torch.zeros(
            envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE, dtype=torch.uint8, device="cuda"
        )
    return trtllm_gen_workspace_buffer

_trtllm_prefill_attn_kvfp8_dequant

_trtllm_prefill_attn_kvfp8_dequant(
    kv_cache_ptr,
    block_tables_prefill_ptr,
    block_table_stride,
    mock_kv_cache_ptr,
    k_scale_ptr,
    v_scale_ptr,
    K_CACHE_STRIDE: constexpr,
    KV_CACHE_STRIDE: constexpr,
)
Source code in vllm/v1/attention/backends/flashinfer.py
@triton.jit
def _trtllm_prefill_attn_kvfp8_dequant(
    kv_cache_ptr,
    block_tables_prefill_ptr,
    block_table_stride,
    mock_kv_cache_ptr,
    k_scale_ptr,
    v_scale_ptr,
    K_CACHE_STRIDE: tl.constexpr,
    KV_CACHE_STRIDE: tl.constexpr,
):
    batch_idx = tl.program_id(0).to(tl.int64)
    mock_block_table_idx = tl.program_id(1).to(tl.int64)
    orig_page_num = tl.load(
        block_tables_prefill_ptr + batch_idx * block_table_stride + mock_block_table_idx
    ).to(tl.int64)
    if orig_page_num <= 0:
        return
    dequant_dtype = mock_kv_cache_ptr.dtype.element_ty

    # Dequantize K
    k_scale_val = tl.load(k_scale_ptr)
    offset = orig_page_num * KV_CACHE_STRIDE + tl.arange(0, K_CACHE_STRIDE)
    fp8_vals = tl.load(kv_cache_ptr + offset)
    dequantized_vals = fp8_vals.to(tl.float32) * k_scale_val
    mock_cache_offset = (
        batch_idx * block_table_stride + mock_block_table_idx + 1
    ) * KV_CACHE_STRIDE + tl.arange(0, K_CACHE_STRIDE)
    dequantized_vals = dequantized_vals.to(dequant_dtype)
    tl.store(mock_kv_cache_ptr + mock_cache_offset, dequantized_vals)

    # Dequantize V
    v_scale_val = tl.load(v_scale_ptr)
    offset = (
        orig_page_num * KV_CACHE_STRIDE + K_CACHE_STRIDE + tl.arange(0, K_CACHE_STRIDE)
    )
    fp8_vals = tl.load(kv_cache_ptr + offset)
    dequantized_vals = fp8_vals.to(tl.float32) * v_scale_val
    mock_cache_offset = (
        (batch_idx * block_table_stride + mock_block_table_idx + 1) * KV_CACHE_STRIDE
        + K_CACHE_STRIDE
        + tl.arange(0, K_CACHE_STRIDE)
    )
    dequantized_vals = dequantized_vals.to(dequant_dtype)
    tl.store(mock_kv_cache_ptr + mock_cache_offset, dequantized_vals)

fast_plan_decode

fast_plan_decode(
    self,
    indptr_cpu: Tensor,
    indices: Tensor,
    last_page_len_cpu: Tensor,
    seq_lens_cpu: Tensor,
    num_qo_heads: int,
    num_kv_heads: int,
    head_dim: int,
    page_size: int,
    pos_encoding_mode: str = "NONE",
    window_left: int = -1,
    logits_soft_cap: float | None = None,
    q_data_type: str | dtype | None = "float16",
    kv_data_type: str | dtype | None = None,
    data_type: str | dtype | None = None,
    sm_scale: float | None = None,
    rope_scale: float | None = None,
    rope_theta: float | None = None,
    non_blocking: bool = True,
    fixed_split_size: int = -1,
    disable_split_kv: bool = False,
) -> None

A faster version of BatchDecodeWithPagedKVCacheWrapper::plan used for cudagraph capture/replay, while the no cudagraph version turns back to the original plan. using original plan after passing host-side buffers: - only host-to-device copy of indptr and last_page_len buffers Modifications for cudagraph: - only host-to-device copy of indptr and last_page_len buffers. - avoid device-to-device copy of indices buffer.

Part of the code get inspiration from the original plan from FlashInfer repo and the implementation of fast_decode_plan for FlashInfer in SGlang repo.

Source code in vllm/v1/attention/backends/flashinfer.py
def fast_plan_decode(
    self,  # decode wrapper
    indptr_cpu: torch.Tensor,
    indices: torch.Tensor,
    last_page_len_cpu: torch.Tensor,
    seq_lens_cpu: torch.Tensor,
    num_qo_heads: int,
    num_kv_heads: int,
    head_dim: int,
    page_size: int,
    pos_encoding_mode: str = "NONE",
    window_left: int = -1,
    logits_soft_cap: float | None = None,
    q_data_type: str | torch.dtype | None = "float16",
    kv_data_type: str | torch.dtype | None = None,
    data_type: str | torch.dtype | None = None,
    sm_scale: float | None = None,
    rope_scale: float | None = None,
    rope_theta: float | None = None,
    non_blocking: bool = True,
    fixed_split_size: int = -1,
    disable_split_kv: bool = False,
) -> None:
    """
    A faster version of BatchDecodeWithPagedKVCacheWrapper::plan used for
    cudagraph capture/replay, while the no cudagraph version turns back
    to the original plan.
    using original plan after passing host-side buffers:
    - only host-to-device copy of indptr and last_page_len buffers
    Modifications for cudagraph:
    - only host-to-device copy of indptr and last_page_len buffers.
    - avoid device-to-device copy of indices buffer.

    Part of the code get inspiration from the original plan from FlashInfer repo
    and the implementation of fast_decode_plan for FlashInfer in SGlang repo.
    """
    # Warm up with the original plan if it is first call, and always run the
    # original plan if we run for dynamic shape. For fixed shape (cudagraph),
    # this warm up is to generate the _cached_module for the decode wrapper.
    if not self.is_cuda_graph_enabled or getattr(self, "vllm_first_call", True):
        self.plan(
            indptr_cpu,
            indices,
            last_page_len_cpu,
            num_qo_heads,
            num_kv_heads,
            head_dim,
            page_size,
            pos_encoding_mode,
            window_left,
            logits_soft_cap,
            q_data_type,
            kv_data_type,
            data_type,
            sm_scale,
            rope_scale,
            rope_theta,
            non_blocking,
            None,  # block_tables
            None,  # seq_lens
            fixed_split_size,
            disable_split_kv,
        )
        self.vllm_first_call = False
        return

    assert self.is_cuda_graph_enabled, "Should be cudagraph only here"

    batch_size = len(last_page_len_cpu)
    if logits_soft_cap is None:
        logits_soft_cap = 0.0

    # Handle data types consistently
    if data_type is not None:
        if q_data_type is None:
            q_data_type = data_type
        if kv_data_type is None:
            kv_data_type = data_type
    elif q_data_type is None:
        q_data_type = "float16"

    if kv_data_type is None:
        kv_data_type = q_data_type
    q_data_type = (
        getattr(torch, q_data_type) if isinstance(q_data_type, str) else q_data_type
    )
    kv_data_type = (
        getattr(torch, kv_data_type) if isinstance(kv_data_type, str) else kv_data_type
    )

    if batch_size != self._fixed_batch_size:
        raise ValueError(
            "The batch size should be fixed in cudagraph mode, the runtime "
            "batch size {} mismatches the batch size set during "
            "initialization {}".format(batch_size, self._fixed_batch_size)
        )
    if len(indices) > len(self._paged_kv_indices_buf):
        raise ValueError(
            "The size of indices should be less than or equal to the allocated buffer"
        )

    # host-to-device copy for the indptr buffer
    self._paged_kv_indptr_buf.copy_(indptr_cpu, non_blocking=True)
    # host-to-device copy for the last_page_len buffer
    self._paged_kv_last_page_len_buf.copy_(last_page_len_cpu, non_blocking=True)

    qo_indptr_host = _get_range_buf(batch_size + 1, "cpu")

    try:
        # Make sure we pass exactly 19 arguments for tensor core version
        self._plan_info = self._cached_module.plan(
            self._float_workspace_buffer,
            self._int_workspace_buffer,
            self._pin_memory_int_workspace_buffer,
            qo_indptr_host,
            indptr_cpu,
            seq_lens_cpu,
            batch_size,  # total_num_rows
            batch_size,
            num_qo_heads,
            num_kv_heads,
            page_size,
            self.is_cuda_graph_enabled,
            head_dim,
            head_dim,
            False,  # causal
            window_left,
            fixed_split_size,
            disable_split_kv,
            0,
        )
    except Exception as e:
        raise RuntimeError(f"Error in tensor core plan: {e}") from e

    self._pos_encoding_mode = pos_encoding_mode
    self._window_left = window_left
    self._logits_soft_cap = logits_soft_cap
    self._sm_scale = sm_scale
    self._rope_scale = rope_scale
    self._rope_theta = rope_theta

trtllm_prefill_attn_kvfp8_dequant

trtllm_prefill_attn_kvfp8_dequant(
    kv_cache: Tensor,
    block_tables_prefill: Tensor,
    k_scale: Tensor,
    v_scale: Tensor,
    dequant_dtype: dtype,
) -> tuple[Tensor, Tensor]
Source code in vllm/v1/attention/backends/flashinfer.py
def trtllm_prefill_attn_kvfp8_dequant(
    kv_cache: torch.Tensor,
    block_tables_prefill: torch.Tensor,
    k_scale: torch.Tensor,
    v_scale: torch.Tensor,
    dequant_dtype: torch.dtype,
) -> tuple[torch.Tensor, torch.Tensor]:
    batch_size, num_of_page_per_token = block_tables_prefill.shape
    s = kv_cache.shape
    assert s[1] == 2
    assert dequant_dtype in (torch.bfloat16, torch.float16)
    k_cache_stride = s[2] * s[3] * s[4]
    kv_cache_stride = k_cache_stride * s[1]
    new_s = (batch_size * num_of_page_per_token + 1, s[1], s[2], s[3], s[4])
    # mock kv cache contains just the pages needed by this prefill
    mock_kv_cache = torch.empty(new_s, dtype=dequant_dtype, device=kv_cache.device)
    # we simply sequentially index the pages needed by this prefill
    mock_block_table = torch.arange(
        start=1,
        end=batch_size * num_of_page_per_token + 1,
        dtype=torch.int32,
        device=block_tables_prefill.device,
    ).reshape(batch_size, num_of_page_per_token)
    grid = (batch_size, num_of_page_per_token)
    _trtllm_prefill_attn_kvfp8_dequant[grid](
        kv_cache,
        block_tables_prefill,
        num_of_page_per_token,
        mock_kv_cache,
        k_scale,
        v_scale,
        k_cache_stride,
        kv_cache_stride,
    )
    return mock_kv_cache, mock_block_table