vllm.v1.attention.backends.utils ¶
_KV_CACHE_LAYOUT_OVERRIDE module-attribute ¶
_KV_CACHE_LAYOUT_OVERRIDE: KVCacheLayoutType | None = None
PerLayerParameters dataclass ¶
Currently, FlashInfer backend only support models in which all layers share the same values for the following hyperparameters. Should not be used for trtllm-gen backend since it supports different values for the following hyperparameters.
Source code in vllm/v1/attention/backends/utils.py
compute_causal_conv1d_metadata ¶
compute_causal_conv1d_metadata(query_start_loc_p: Tensor)
Source code in vllm/v1/attention/backends/utils.py
create_fast_prefill_custom_backend ¶
create_fast_prefill_custom_backend(
prefix: str,
underlying_attn_backend: type[AttentionBackend],
) -> type[AttentionBackend]
Source code in vllm/v1/attention/backends/utils.py
get_dcp_local_seq_lens ¶
get_dcp_local_seq_lens(
seq_lens: Tensor,
dcp_size: int = 1,
dcp_rank: int | None = None,
cp_kv_cache_interleave_size: int = 1,
) -> Tensor
While using dcp, kv_cache size stored on each rank may be different, use this function to calculate split decode seq_lens of each dcp rank. Only consider dcp now, we can extend the case of cp based on this.
Source code in vllm/v1/attention/backends/utils.py
get_kv_cache_layout cached ¶
Source code in vllm/v1/attention/backends/utils.py
get_per_layer_parameters ¶
get_per_layer_parameters(
vllm_config: VllmConfig,
layer_names: list[str],
cls_: type[AttentionImpl],
) -> dict[str, PerLayerParameters]
Scan layers in layer_names and determine some hyperparameters to use during plan.
Source code in vllm/v1/attention/backends/utils.py
infer_global_hyperparameters ¶
infer_global_hyperparameters(
per_layer_params: dict[str, PerLayerParameters],
) -> PerLayerParameters
Currently, FlashInfer backend other than trtllm-gen only support models in which all layers share the same values for the following hyperparameters: - window_left - logits_soft_cap - sm_scale
So this function asserts that all layers share the same values for these hyperparameters and returns the global values.
Source code in vllm/v1/attention/backends/utils.py
is_valid_kv_cache_layout ¶
make_kv_sharing_fast_prefill_common_attn_metadata ¶
make_kv_sharing_fast_prefill_common_attn_metadata(
common_attn_metadata: CommonAttentionMetadata,
) -> CommonAttentionMetadata
Source code in vllm/v1/attention/backends/utils.py
make_local_attention_virtual_batches ¶
make_local_attention_virtual_batches(
attn_chunk_size: int,
common_attn_metadata: CommonAttentionMetadata,
block_size: int = 0,
) -> tuple[
CommonAttentionMetadata, Callable[[Tensor], Tensor]
]
Source code in vllm/v1/attention/backends/utils.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 | |
reorder_batch_to_split_decodes_and_prefills ¶
reorder_batch_to_split_decodes_and_prefills(
input_batch: InputBatch,
scheduler_output: SchedulerOutput,
decode_threshold: int = 1,
) -> bool
Reorders the batch to split into prefill and decode requests; places all requests with <= decode_threshold tokens at the front of the batch.
Returns:
| Type | Description |
|---|---|
bool | True if the batch was modified, False otherwise. |
Source code in vllm/v1/attention/backends/utils.py
reshape_attn_output_for_spec_decode ¶
Reshapes the attention output tensor, so that the batch_size and seq_len dimensions are combined.
Source code in vllm/v1/attention/backends/utils.py
reshape_query_for_spec_decode ¶
Reshapes the query tensor for the specified batch size, so that it has shape (batch_size, seq_len, num_heads, head_dim).
Source code in vllm/v1/attention/backends/utils.py
set_kv_cache_layout ¶
set_kv_cache_layout(cache_layout: KVCacheLayoutType)
split_decodes_and_prefills ¶
split_decodes_and_prefills(
common_attn_metadata: CommonAttentionMetadata,
decode_threshold: int = 1,
require_uniform: bool = False,
) -> tuple[int, int, int, int]
Assuming a reordered batch, finds the boundary between prefill and decode requests.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
common_attn_metadata | CommonAttentionMetadata | CommonAttentionMetadata object containing the batch metadata. | required |
decode_threshold | int | The maximum query length to be considered a decode. | 1 |
require_uniform | bool | If True, requires that all decode requests have the same query length. When set, some queries may be considered prefills even if they are <= decode_threshold, in order to ensure uniformity. | False |
Returns:
| Name | Type | Description |
|---|---|---|
num_decodes | int | The number of decode requests. |
num_prefills | int | The number of prefill requests. |
num_decode_tokens | int | The number of tokens in the decode requests. |
num_prefill_tokens | int | The number of tokens in the prefill requests. |
Source code in vllm/v1/attention/backends/utils.py
split_decodes_prefills_and_extends ¶
split_decodes_prefills_and_extends(
common_attn_metadata: CommonAttentionMetadata,
decode_threshold: int = 1,
) -> tuple[int, int, int, int, int, int]
Assuming a reordered batch, finds the boundary between prefill and decode requests.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
common_attn_metadata | CommonAttentionMetadata | CommonAttentionMetadata object containing the batch metadata. | required |
decode_threshold | int | The maximum query length to be considered a decode. | 1 |
Returns:
| Name | Type | Description |
|---|---|---|
num_decodes | int | The number of decode requests. |
num_extends | int | The number of extend requests. |
num_prefills | int | The number of prefill requests. |
num_decode_tokens | int | The number of tokens in the decode requests. |
num_extend_tokens | int | The number of tokens in the extend requests. |
num_prefill_tokens | int | The number of tokens in the prefill requests. |
Source code in vllm/v1/attention/backends/utils.py
split_prefill_chunks ¶
split_prefill_chunks(
seq_lens_cpu: Tensor,
workspace_size: int,
request_offset: int = 0,
) -> list[tuple[int, int]]
Split the prefill requests into chunks such that the total sequence length of each chunk is less than or equal to the workspace size.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
seq_lens_cpu | Tensor | The sequence lengths of the prefill requests on CPU. | required |
workspace_size | int | The maximum workspace size (in tokens) per chunk. | required |
request_offset | int | The offset to add to the request indices. | 0 |
Returns: A list of tuples of (reqs_start, reqs_end) representing chunk boundaries.
Source code in vllm/v1/attention/backends/utils.py
subclass_attention_metadata ¶
subclass_attention_metadata(
name_prefix: str,
metadata_cls: Any,
fields: list[tuple[str, Any, Any]],
) -> Any
Return a new subclass of metadata_cls with additional fields