class CPUOffloadingSpec(OffloadingSpec):
def __init__(self, vllm_config: VllmConfig, kv_cache_config: KVCacheConfig):
super().__init__(vllm_config, kv_cache_config)
cpu_bytes_to_use = self.extra_config.get("cpu_bytes_to_use")
if not cpu_bytes_to_use:
raise Exception(
"cpu_bytes_to_use must be specified in kv_connector_extra_config"
)
# calculate kv_bytes_per_offloaded_block
assert kv_cache_config is not None
page_sizes = {
kv_cache_group.kv_cache_spec.page_size_bytes
for kv_cache_group in kv_cache_config.kv_cache_groups
}
assert len(page_sizes) == 1
page_size_bytes = page_sizes.pop()
kv_bytes_per_block = (
page_size_bytes
* len(kv_cache_config.kv_cache_tensors)
* vllm_config.parallel_config.world_size
)
kv_bytes_per_offloaded_block = kv_bytes_per_block * (
self.offloaded_block_size // self.gpu_block_size
)
self.num_blocks = (
int(cpu_bytes_to_use) // kv_bytes_per_offloaded_block
if kv_bytes_per_offloaded_block > 0
else 0
)
# scheduler-side
self._manager: OffloadingManager | None = None
# worker-side
self._handlers: CpuGpuOffloadingHandlers | None = None
self.eviction_policy: str = self.extra_config.get("eviction_policy", "lru")
def get_manager(self) -> OffloadingManager:
if not self._manager:
kv_events_config = self.vllm_config.kv_events_config
enable_events = (
kv_events_config is not None and kv_events_config.enable_kv_cache_events
)
backend = CPUBackend(
block_size=self.offloaded_block_size, num_blocks=self.num_blocks
)
if self.eviction_policy == "lru":
self._manager = LRUOffloadingManager(
backend=backend, enable_events=enable_events
)
elif self.eviction_policy == "arc":
self._manager = ARCOffloadingManager(
backend=backend, enable_events=enable_events
)
else:
raise ValueError(
f"Unknown eviction policy: {self.eviction_policy}. "
f"Supported policies: lru, arc"
)
return self._manager
def get_handlers(
self,
kv_caches: dict[str, torch.Tensor],
attn_backends: dict[str, type[AttentionBackend]],
) -> Iterator[tuple[type[LoadStoreSpec], type[LoadStoreSpec], OffloadingHandler]]:
if not self._handlers:
if not current_platform.is_cuda_alike():
raise Exception(
"CPU Offloading is currently only supported on CUDA-alike GPUs"
)
self._handlers = CpuGpuOffloadingHandlers(
attn_backends=attn_backends,
gpu_block_size=self.gpu_block_size,
cpu_block_size=self.offloaded_block_size,
num_cpu_blocks=self.num_blocks,
gpu_caches=kv_caches,
)
assert self._handlers is not None
yield GPULoadStoreSpec, CPULoadStoreSpec, self._handlers.gpu_to_cpu_handler
yield CPULoadStoreSpec, GPULoadStoreSpec, self._handlers.cpu_to_gpu_handler