class RequestState:
def __init__(
self,
max_num_reqs: int,
max_model_len: int,
max_num_batched_tokens: int,
num_speculative_steps: int,
vocab_size: int,
device: torch.device,
):
self.max_num_reqs = max_num_reqs
self.max_model_len = max_model_len
self.max_num_batched_tokens = max_num_batched_tokens
self.num_speculative_steps = num_speculative_steps
self.vocab_size = vocab_size
self.device = device
self.req_id_to_index: dict[str, int] = {}
self.index_to_req_id: dict[int, str] = {}
self.free_indices = list(range(max_num_reqs))
self.extra_data: dict[str, ExtraData] = {}
self.prompt_len = np.zeros(self.max_num_reqs, dtype=np.int32)
# NOTE(woosuk): This tensor can be extremely large (e.g., several GBs)
# depending on the configured max_num_reqs and max_model_len.
# To save GPU memory, we use UVA instead of GPU for this tensor.
self.prefill_token_ids = StagedWriteTensor(
(self.max_num_reqs, self.max_model_len),
dtype=torch.int32,
device=device,
uva_instead_of_gpu=True,
)
self.prefill_len = UvaBackedTensor(self.max_num_reqs, dtype=torch.int32)
# Number of computed tokens.
self.num_computed_prefill_tokens = np.zeros(self.max_num_reqs, dtype=np.int32)
self.num_computed_tokens = StagedWriteTensor(
self.max_num_reqs, dtype=torch.int32, device=device
)
# Last sampled tokens.
self.last_sampled_tokens = torch.zeros(
self.max_num_reqs,
1,
dtype=torch.int64,
device=device,
)
# Draft tokens.
self.draft_tokens = torch.zeros(
self.max_num_reqs,
self.num_speculative_steps,
dtype=torch.int64,
device=device,
)
self.next_prefill_tokens = torch.zeros(
self.max_num_reqs, dtype=torch.int32, device=device
)
# LoRA.
self.lora_ids = np.zeros(self.max_num_reqs, dtype=np.int32)
self.lora_ids.fill(NO_LORA_ID)
self.needs_prompt_logprobs = np.zeros(self.max_num_reqs, dtype=bool)
@property
def num_reqs(self) -> int:
return len(self.req_id_to_index)
def add_request(
self,
req_id: str,
prompt_len: int,
prefill_token_ids: list[int],
num_computed_tokens: int,
sampling_params: SamplingParams,
lora_request: LoRARequest | None,
) -> None:
assert len(self.free_indices) > 0, "No free indices"
req_idx = self.free_indices.pop()
self.req_id_to_index[req_id] = req_idx
self.index_to_req_id[req_idx] = req_id
self.extra_data[req_id] = ExtraData(lora_request)
self.prompt_len[req_idx] = prompt_len
prefill_len = len(prefill_token_ids)
assert prefill_len >= prompt_len, (
f"prefill_len {prefill_len} < prompt_len {prompt_len}"
)
self.prefill_len.np[req_idx] = prefill_len
self.prefill_token_ids.stage_write(req_idx, 0, prefill_token_ids)
self.num_computed_prefill_tokens[req_idx] = num_computed_tokens
self.num_computed_tokens.stage_write_elem(req_idx, num_computed_tokens)
if lora_request is not None:
self.lora_ids[req_idx] = lora_request.lora_int_id
else:
self.lora_ids[req_idx] = NO_LORA_ID
# For now, only support prompt logprobs for the prompt tokens.
needs_prompt_logprobs = sampling_params.prompt_logprobs is not None
self.needs_prompt_logprobs[req_idx] = needs_prompt_logprobs
def apply_staged_writes(self) -> None:
self.prefill_len.copy_to_uva()
self.prefill_token_ids.apply_write()
self.num_computed_tokens.apply_write()
def remove_request(self, req_id: str) -> None:
self.extra_data.pop(req_id, None)
req_idx = self.req_id_to_index.pop(req_id, None)
if req_idx is None:
# Request not found.
return
self.index_to_req_id.pop(req_idx, None)
self.free_indices.append(req_idx)
def make_lora_inputs(
self,
req_ids: list[str],
idx_mapping: np.ndarray,
num_scheduled_tokens: np.ndarray,
) -> tuple[tuple[int, ...], tuple[int, ...], set[LoRARequest]]:
lora_ids = self.lora_ids[idx_mapping]
prompt_lora_mapping = tuple(lora_ids)
token_lora_mapping = tuple(lora_ids.repeat(num_scheduled_tokens))
active_lora_requests: set[LoRARequest] = set()
for req_id in req_ids:
lora_request = self.extra_data[req_id].lora_request
if lora_request is not None:
active_lora_requests.add(lora_request)
return prompt_lora_mapping, token_lora_mapping, active_lora_requests